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Abstract

We solve a generalised form of a conjecture of Kalai motivated by attempts to improve the
bounds for Borsuk’s problem. The conjecture can be roughly understood as asking for an analogue
of the Frankl-Rödl forbidden intersection theorem in which set intersections are vector-valued. We
discover that the vector world is richer in surprising ways: in particular, Kalai’s conjecture is false,
but we prove a corrected statement that is essentially best possible, and applies to a considerably
more general setting. Our methods include the use of maximum entropy measures, VC-dimension,
Dependent Random Choice and a new correlation inequality for product measures.

1 Introduction

Intersection theorems have been a central topic of Extremal Combinatorics since the seminal paper
of Erdős, Ko and Rado [9], and the area has grown into a vast body of research (see [2], [4] or [19]
for an overview). The Frankl-Rödl forbidden intersection theorem is a fundamental result of this
type, which has had a wide range of applications to different areas of mathematics, including discrete
geometry [12], communication complexity [28] and quantum computing [6].

To state their result we introduce the following notation. Let [n] = {1, . . . , n} and let
([n]
k

)
=

{A ⊂ [n] : |A| = k}. For A ⊂
([n]
k

)
and t ∈ [n] let A ×t A be the set of all (A,B) ∈ A × A with

|A ∩ B| = t. Note that
([n]
k

)
×t
([n]
k

)
is non-empty if and only if max(2k − n, 0) ≤ t ≤ k. Frankl and

Rödl proved the following ‘supersaturation theorem’, showing that if t is bounded away from these
extremes and A is ‘exponentially dense’ in

([n]
k

)
then A×tA is ‘exponentially dense’ in

([n]
k

)
×t
([n]
k

)
.

Theorem 1.1 (Frankl–Rödl [11]). Let1 0 < n−1 � δ � ε < 1 and max(2k−n, 0) + εn ≤ t ≤ k− εn.

Suppose A ⊂
([n]
k

)
with |A| ≥ (1− δ)n

(
n
k

)
. Then |A ×t A| ≥ (1− ε)n

∣∣∣([n]
k

)
×t
([n]
k

)∣∣∣.
In a recent survey on the Borsuk problem, Kalai [21] remarked that the Frankl–Rödl theorem can

be used to give a counterexample to the Borsuk conjecture (the Frankl–Wilson intersection theorem
[13] was used in Kahn and Kalai’s celebrated counterexample [20]), and suggested that improved
bounds might follow from a suitably generalised Frankl–Rödl theorem. He proposed the following
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1Throughout the paper we will write α � β to denote that the statement is valid, provided α is sufficiently small
as a function of β, i.e. α ≤ α(β). Thus, in Theorem 1.1 ‘n−1 � δ � ε’ means that for any 0 < ε < 1 there is δ0 > 0
such that for any 0 < δ < δ0 there is n0 such that for n ≥ n0 the theorem holds.
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supersaturation conjecture as a possible step in this direction, in which one measures a set by its size
|A| =

∑
i∈A 1 and its sum

∑
A =

∑
i∈A i. Let [n]k,s be the set of A ⊂ [n] with |A| = k and

∑
A = s.

For A ⊂ [n]k,s write

A×(t,w) A =
{

(A,B) ∈ A×A : A 6= B with |A ∩B| = t and
∑

(A ∩B) = w
}
.

Conjecture 1.2 (Kalai). Let 0 < n−1 � δ � ε, α1, α2, β1, β2 < 1, k = bα1nc, s =
⌊
α2

(
n
2

)⌋
,

t = bβ1nc and w =
⌊
β2

(
n
2

)⌋
. Suppose A ⊂ [n]k,s with |A| ≥ (1 − δ)n|[n]k,s|. Then |A ×(t,w) A| ≥⌊

(1− ε)n
∣∣[n]k,s ×(t,w) [n]k,s

∣∣⌋.
Somewhat surprisingly, this conjecture is false! In fact, although the conjecture holds in a number

of natural special cases, it fails quite dramatically in general; for most pairs (α1, α2) there is exactly
one choice of (β1, β2) for which Conjecture 1.2 holds. Before stating this result, we first remark that
Conjecture 1.2 is only non-trivial when [n]k,s is exponentially large in n (when |[n]k,s ×(t,w) [n]k,s| ≥
(1 − ε)−n, requiring |[n]k,s| ≥ (1 − ε)−n/2). Defining α1, α2 as in Conjecture 1.2, we can therefore
assume that (α1, α2) belongs to

Λ := {(x, y) : 0 < x < 1, x2 < y < 2x− x2}.

We say that g = (α1, α2, β1, β2) is (n, δ, ε)-Kalai if Conjecture 1.2 holds for g, i.e. any A ⊂ [n]k,s
with |A| ≥ (1− δ)n|[n]k,s| satisfies |A ×(t,w) A| ≥

⌊
(1− ε)n

∣∣[n]k,s ×(t,w) [n]k,s
∣∣⌋. We will classify the

Kalai parameters g in terms of the following set Γ; note that the definition of Γ1 uses two functions
β1, β2 : Λ→ R that will be defined in Section 10, see (9). Let Γ =

⋃
i∈[3] Γi, where

(Popular intersections) Γ1 =
{

(α1, α2, β1, β2) : (α1, α2) ∈ Λ, α1 6= α2 and βi = βi(α1, α2)
}

;

(Doubly random) Γ2 =
{

(α, α, β, β) : 0 < α < 1 and max(2α− 1, 0) < β < α
}

;

(Uniformly random sets) Γ3 =
{

(1/2, 1/2, β1, β2) : (2β1, 2β2) ∈ Λ
}
.

Theorem 1.3. Supppose g = (α1, α2, β1, β2) ∈ [0, 1]4 with (α1, α2) ∈ Λ and n−1 � δ � ε� ε′ � g.
Let d(g,Γ) = inf{‖g − g′‖1 : g′ ∈ Γ}.

i. If d(g,Γ) ≤ δ then g is (n, δ, ε)-Kalai.
ii. If d(g,Γ) ≥ ε′ and |[n]k,s ×(t,w) [n]k,s| ≥ (1− ε)−n then g is not (n, δ, ε)-Kalai.

Remark 1.4. The condition |[n]k,s ×(t,w) [n]k,s| ≥ (1− ε)−n in Theorem 1.3 just appears to ensure
that the lower bound on |A ×(t,w) A| in Conjecture 1.2 is non-trivial.

The labels assigned to the parts of Γ correspond to the following interpretations:

• Popular intersections: For (α1, α2) ∈ Λ with α1 6= α2 there is exactly one (α1, α2, β1, β2) ∈
Γ1. For n large, the value (β1n, β2

(
n
2

)
) is essentially the most popular intersection between sets

in [n]k,s, where (k, s) = (α1n, α2

(
n
2

)
).

• Doubly random: If A ⊂ [n] is a uniformly random set of size k = αn, the expected size
of
∑
A is s = α

(
n
2

)
+ o(n2). Similarly, if two sets A and B in [n]k,s with |A ∩ B| = βn are

randomly selected then the expected value of
∑

(A ∩ B) is β
(
n
2

)
+ o(n2). Theorem 1.3 for Γ2

shows Conjecture 1.2 holds for ‘random-like βn intersections’ between ‘random-like αn sets’,
provided α and β satisfy the Frankl-Rödl conditions.
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• Uniformly random sets: Most sets A ⊂ [n] have k = 1
2n + o(n), s = 1

2

(
n
2

)
+ o(n2) and

|A∩ [2L]| = L± o(n) for all L ≤ n/2. Intersections of type (t, w) = (β1n, β2

(
n
2

)
) can only occur

between such sets if (2β1 + o(1), 2β2 + o(1)) ∈ Λ. Theorem 1.3 for Γ3 shows that Conjecture
1.2 is true for (α1, α2) = (1/2, 1/2) provided this necessary condition is fulfilled.

Remark 1.5. While Theorem 1.3 shows that Conjecture 1.2 is often false, we will also give two
concrete counterexamples, which illustrate two different reasons why the conjecture fails. We defer
these examples to Section 5 as their analysis uses some results from Sections 2–4.

Although the bounds from Conjecture 1.2 in general do not hold, it is still natural to ask whether
we can find any (t, w)-intersection in such ‘exponentially dense’ subsets A ⊂ [n]k,s. If so, what is the
optimal lower bound on |A ×(t,w) A|? This paper investigates these questions; in particular, we give
a natural correction to Conjecture 1.2.

Our results will apply to the following more general setting of vector-valued set ‘sizes’: given
vectors V = (vi : i ∈ [n]) in RD, we define the V-size of A ⊂ [n] by

|A|V =
∑
i∈A

vi.

We note that the Frankl-Rödl theorem concerns V-sizes where D = 1 and all vi = 1, and the Kalai
conjecture concerns V-sizes where D = 2 and vi = (1, i).

1.1 Vector-valued intersections

In order to prove our forbidden V-intersection theorem, we need to work over a general alphabet,
where we associate a vector with each possible value of each coordinate, as follows.

Definition 1.6. Suppose vij ∈ ZD for all i ∈ [n] and j ∈ J . We call V = (vij) an (n, J)-array in ZD.
For a ∈ Jn we define

V(a) =
∑
i∈[n]

viai .

For A ⊂ Jn and w ∈ ZD we define AVw = {a ∈ A : V(a) = w}.

By identifying subsets of [n] with their characteristic vectors in {0, 1}n, and pairs of subsets of [n]
with vectors in ({0, 1} × {0, 1})n, this definition extends the definition of V-size and V-intersection
via the following specialisation (note that V(A) = |A|V and V∩(A,B) = |A ∩B|V).

Definition 1.7. Suppose V = (vi : i ∈ [n]), where vi ∈ ZD for all i ∈ [n]. We also let V = (vij)

denote the (n, {0, 1})-array in ZD, where vi1 = vi and vi0 = 0. We let V∩ = ((v∩)ij,j′) denote the

(n, {0, 1} × {0, 1})-array in ZD, where (v∩)i1,1 = vi and (v∩)ij,j′ = 0 otherwise.

We also introduce a class of norms on RD to account for the possibility that different coordinates
of vectors in V may operate at different scales. In the following definition we think of R as a scaling;
e.g. for the Kalai vectors (1, i), we take R = (1, n).

Definition 1.8. Suppose R = (R1, . . . , RD) ∈ RD. We define the R-norm on RD by ‖v‖R =
maxd∈[D] |vd|/Rd. We say that V = (vij) is R-bounded if all ‖vij‖R ≤ 1.
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Our V-intersection theorem requires two properties of the set of vectors V. The first property,
roughly speaking, says that any vector in ZD can be efficiently generated by changing the values of
coordinates, and that furthermore this holds even if a small set of coordinates are frozen, so that no
coordinate is overly significant. To see why such a condition is necessary, suppose that D = 1 and
almost all coordinates have only even values: then there are large families where all intersections
have a fixed parity.

Definition 1.9. Let V = (vij) be an (n, J)-array in ZD. We say that V is γ-robustly (R, k)-generating

in ZD if for any v ∈ ZD with ‖v‖R ≤ 1 and T ⊂ [n] with |T | ≤ γn there is S ⊂ [n] \ T with |S| ≤ k
and ji, j

′
i ∈ J for all i ∈ S such that v =

∑
i∈S(viji − vij′i

).

Note that if V = (vi : i ∈ [n]), considered as an (n, {0, 1})-array, then Definition 1.9 says that for
all such v and T there are disjoint S, S′ ⊂ [n]\T with |S|+|S′| ≤ k such that v =

∑
i∈S vi−

∑
i∈S′ vi.

To illustrate the definition, and for future reference, we note that

the Kalai vectors are 0.1-robustly ((1, n), 7)-generating in Z2. (1)

To see this, first note that for any vector (0, b) with b ∈ [n/2], there are n/3 disjoint pairs {i1, i2}
with (0, b) = (1, i1)− (1, i2). This implies that for any vector (0, b) with |b| ≤ n there are n/9 disjoint
sets {i1, i2, j1, j2} with (0, b) = (1, i1) + (1, i2) − (1, j1) − (1, j1). Also, there are n/6 disjoint triples
{i1, i2, i3} with (1, 0) = (1, i1) + (1, i2)− (1, i3). Combined, given T ⊂ [n] with |T | ≤ n/10 < n/9− 3
and (a, b) ∈ Z2 with ‖(a, b)‖R ≤ 1, there are disjoint S, S′ ⊂ [n] \ T with |S| + |S′| ≤ 7 with
(a, b) =

∑
i∈S vi −

∑
i∈S′ vi. Thus (1) holds.

We also make the following ‘general position’ assumption for V.

Definition 1.10. Suppose V = (vi) is an (n, {0, 1})-array in ZD. For I ∈
([n]
D

)
, let VI = {vi : i ∈ I}

and say that I is (γ,R)-generic if | det(VI)| ≥ γ
∏
d∈[D]Rd. We say that V is γ′-robustly (γ,R)-generic

if for any X ⊂ [n] with |X| > γ′n, some I ⊂ X is (γ,R)-generic for V.

We note for future reference that

the Kalai vectors are γ-robustly (γ/2,R)-generic for any γ > 0. (2)

Indeed, if X ⊂ [n] with |X| ≥ γn then we can choose i, i′ ∈ X with |i − i′| ≥ γn − 1 ≥ γn/2, and
then (1, i) and (1, i′) span a parallelogram of area |i− i′| ≥ (γ/2) · 1 · n.

We are now in a position to state our main theorem. It shows that, under the above assumptions
on V, there are only two obstructions to a set X = ({0, 1}n)Vz satisfying a supersaturation result as
in Kalai’s conjecture (case i): either (case ii) there is a small set Bfull ⊂ X responsible for almost
all w-intersections in X , or (case iii) there is a large set Bempty ⊂ X containing no w-intersections.
Furthermore, in case ii we obtain optimal supersaturation relative to Bfull.

Theorem 1.11. Let n−1 � δ � γ1, γ
′
1 � γ2, γ

′
2 � ε,D−1, C−1, k−1 and R ∈ RD with maxdRd ≤

nC . Suppose V = (vi : i ∈ [n]) where each vi ∈ ZD is R-bounded and V is γ′j-robustly (γj ,R)-generic

and γj-robustly (R, k)-generating for j = 1, 2. Let z,w ∈ ZD with z 6= w and let X = ({0, 1}n)Vz .
Then one of the following holds:

i. All A ⊂ X with |A| ≥ (1− δ)n|X | satisfy |(A×A)V∩w | ≥ (1− ε)n|(X × X )V∩w |.
ii. There exists Bfull ⊂ X with |Bfull| ≤ (1− δ)n|X | satisfying

|(X × X )V∩w \ (Bfull × Bfull)V∩w | ≤ (1− δ)n|(X × X )V∩w |.
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iii. There is Bempty ⊂ X with |Bempty| ≥ b(1− ε)n|X |c satisfying (Bempty × Bempty)V∩w = ∅.
Furthermore, if ii holds and iii does not then any B ⊂ Bfull with |B| ≥ (1 − δ)n|Bfull| satisfies
|(B × B)V∩w | ≥ (1− ε)n|(X × X )V∩w |.

Remark 1.12.

i. Theorem 1.11 applies to (t, w)-intersections in [n]k,s, as we have shown above that its hypotheses
hold for the Kalai vectors.

ii. As indicated above, cases ii and iii of Theorem 1.11 may simultaneously hold (see counterex-
ample 1 of Section 5).

iii. The assumption that V is γ1-robustly (R, k)-generating is redundant, as it is implied by γ2-
robustly (R, k)-generating, but the assumptions of γ′j-robustly (γj ,R)-generic for j = 1, 2 are
incomparable, and our proof seems to require this ‘multiscale general position’.

We have highlighted Theorem 1.11 as our main result for the sake of giving a clean combinatorial
statement. However, we will in fact obtain considerably more general results in two directions, whose
precise statements are postponed until later in the paper.

• Our most general result, Theorem 6.3, implies cross-intersection theorems for two or more
families and applies to families of vectors over any finite alphabet.

• Theorem 1.11 leaves open the question of how many w-intersections are guaranteed in large
subsets of X when case (ii) holds; this is answered by Theorem 11.1.

It is natural to ask under which conditions the alternate cases of Theorem 1.11 hold. These
conditions are best understood in relation to our proof framework, so we postpone this discussion to
section 1.4, after we have introduced the two principal components of the proof.

1.2 A probabilistic forbidden intersection theorem

A key paradigm of our approach is that V-intersection theorems often have equivalent formulations in
terms of certain product measures (the maximum entropy measures described in the next subsection),
and that the necessary condition for these theorems appears naturally as a condition on the product
measures. (A similar idea arose in the new proof of the density Hales-Jewett theorem developed by
the first Polymath project [26], although in this case the natural ‘equal slices’ distribution was not
a product measure.)

To illustrate this point, we recast the Frankl-Rödl theorem in such terms. Again we identify
subsets of [n] with their characteristic vectors in {0, 1}n, on which we introduce the product measure
µp(x) =

∏
i∈[n] pxi , where p1 = k/n and p0 = 1 − p1. Pairs of subsets are identified with {0, 1}n ×

{0, 1}n, which we can identify with ({0, 1} × {0, 1})n, on which we introduce the product measure
µq(x,x

′) =
∏
i∈[n] qxi,x′i , where q1,1 = t/n, q0,1 = q1,0 = (k − t)/n and q0,0 = (n − 2k + t)/n. It

follows from our general large deviation principle in the next subsection (or is easy to see directly in
this case) that the hypothesis of Theorem 1.1 is essentially equivalent to µp(A) > (1 − δ)n and the
conclusion to µq(A×tA) > (1− ε)n. Furthermore, the assumption on t can be rephrased as qj,j′ ≥ ε
for all j, j′ ∈ {0, 1}, and this indicates the condition that we need in general.

Let us formalise the above discussion of product measures in a general context. Although we only
considered the cases when the ‘alphabet’ J is {0, 1} or {0, 1} × {0, 1}, we remark that it is essential
for our arguments to work with general alphabets, as the proofs of our results even in the binary
case rely on reductions that increase the alphabet size.
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Definition 1.13. Suppose p = (pij : i ∈ [n], j ∈ J) with all pij ∈ [0, 1] and
∑

j∈J p
i
j = 1 for all i ∈ [n].

The product measure µp on Jn is given, for a ∈ Jn, by µp(a) =
∏
i∈[n] p

i
ai .

Given an (n, J)-array V and a measure µ on Jn, we write V(µ) = Ea∼µV(a).

Suppose µq is a product measure on (
∏
s∈S Js)

n, with q = (qij : i ∈ [n], j ∈
∏
s∈S Js). For s ∈ S

the s-marginal of µq is the product measure µps on Jns with (ps)
i
j =

∑
qij for all i ∈ [n], j ∈ Js,

where the sum is over all j with js = j.

We say that µq has marginals (µps : s ∈ S). We say that µq is κ-bounded if qij ∈ [κ, 1− κ] for all
j ∈
∏
s∈S Js. Note that if µq is κ-bounded then so are its marginals.

Remark 1.14. We will often simply write qij1,j2 for qi(j1,j2), etc.

A rough statement of our probabilistic forbidden intersection theorem (Theorem 1.17 below) is
that if A has ‘large measure’ then the set of w-intersections in A has ‘large measure’. We will
combine this with an equivalence of measures discussed in the next subsection to deduce our main
theorem. First will highlight two special cases of Theorem 1.17 that have independent interest. The
first is the following result, which ignores the intersection conditions, and is only concerned with
the relationship between the measures of A and A × A; it is a new form of correlation inequality
(see Theorem 7.1 for a more general statement that applies to several families defined over general
alphabets).

Theorem 1.15. Let 0 < n−1, δ � κ, ε < 1 and µq be a κ-bounded product measure on ({0, 1} ×
{0, 1})n with both marginals µp. Suppose A ⊂ {0, 1}n with µp(A) > (1 − δ)n. Then µq(A × A) >
(1− ε)n.

Next we consider the problem of finding V-intersections that are close to w, which is also natural,
and somewhat easier than finding V-intersections that are (exactly) w. We require some notation.
For r > 0 let BR(w, r) = {w′ ∈ ZD : ‖w −w′‖R ≤ r}. For A ⊂ P[n] and L ⊂ ZD let (A×A)V∩L ={

(A,B) ∈ A×A : V∩(A,B) ∈ L
}

.

Theorem 1.16. Let 0 < n−1, δ � ζ � κ, ε� D−1 and R ∈ ZD. Suppose that

i. µq is a κ-bounded product measure on ({0, 1} × {0, 1})n with both marginals µp,
ii. V = (vi : i ∈ [n]) is an R-bounded array in ZD,

iii. V∩(µq) = w ∈ RD and L := BR(w, ζn).

Then any A ⊂ {0, 1}n with µp(A) > (1− δ)n satisfies µq((A×A)V∩L ) > (1− ε)n.

Theorem 1.16 naturally fits into the wide literature on forbidden L-intersections in extremal set
theory (see [2], [4] or [19]). Here one aims to understand how large certain families of sets can
be if all intersections between elements of A are restricted to lie in some set L. For example, the
Erdős-Ko-Rado theorem [9] can be viewed as an L0-intersection theorem for families A ⊂

(
n
k

)
, where

L0 = {l ∈ N : 1 ≤ l ≤ k}. Similarly, Katona’s t-intersection theorem [22] can be viewed as an
L≥t-intersection theorem for families A ⊂ P[n], where L≥t = {l ∈ N : l ≥ t}. We also note that
when D = 1 the set L = BR(w, ζn) in Theorem 1.16 is simply an interval, and this case naturally
arose in Frankl and Rödl’s original proof of Theorem 1.1.

Now we state our probabilistic forbidden intersection theorem: if V is robustly generating then
Theorem 1.16 can be upgraded to find fixed V-intersections.

Theorem 1.17. Let 0 < n−1, δ � ζ � κ, γ, ε � D−1, C−1, k−1 and R ∈ ZD with maxdRd < nC .
Suppose that
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i. µq is a κ-bounded product measure on ({0, 1} × {0, 1})n with both marginals µp,
ii. V = (vi : i ∈ [n]) is R-bounded and γ-robustly (R, k)-generating in ZD,

iii. w ∈ ZD with ‖w − V∩(µq)‖R < ζn.

Then any A ⊂ {0, 1}n with µp(A) > (1− δ)n satisfies µq((A×A)V∩w ) > (1− ε)n.

1.3 Maximum entropy and large deviations

Next we will discuss an equivalence of measures that will later combine with Theorem 1.17 to yield
Theorem 1.11. Here we are guided by the maximum entropy principle (proposed by Jaynes [18]
in the context of Statistical Mechanics) which suggests considering the distribution with maximum
entropy2 subject to the constraints of our problem, as defined in the following lemma (the proof is
easy and appears in Lemma 2.6 in Section 2).

Lemma 1.18. Suppose V = (vij) is an (n, J)-array in ZD and w ∈ ZD. Let MVw be the set of

probability measures µ on Jn such that V(µ) = w. Then, provided MVw is non-empty, there is a
unique distribution µVw ∈MVw with H(µVw) = maxµ∈MVw H(µ), and µVw is a product measure µpVw on

Jn, where
∑

i∈[n],j∈J(pVw)ijv
i
j = w.

We will show that µVw is equivalent to the uniform measure on (Jn)Vw, in the sense of exponential
contiguity, defined as follows. (It is reminiscent of, but distinct from, the more well-known theory of
contiguity, see [17, Section 9.6].)

Definition 1.19. Let µ = (µn)n∈N and µ′ = (µ′n)n∈N, where µn and µ′n are probability measures on
a finite set Ωn for all n ∈ N. Let F = (Fn)n∈N where each Fn is a set of subsets of Ωn.

We say that µ′ exponentially dominates µ relative to F , and write µ .F µ′, if for n−1 � δ �
ε � 1 and An ∈ Fn with µn(An) > (1 − δ)n we have µ′n(An) > (1 − ε)n. We say that µ and µ′ are
exponentially contiguous relative to F , and write µ ≈F µ′ if µ .F µ′ and µ′ .F µ.

If ∆ = (∆n)n∈N with each ∆n ⊂ Ωn then we write µ .∆ µ′ if µ .F µ′, where Fn is the set of all
subsets of ∆n; we define µ ≈∆ µ′ similarly.

Note that .F is a partial order and ≈F is an equivalence relation.

The following result establishes the required equivalence of measures under the same hypotheses
as in the previous subsection. It can be regarded as a large deviation principle for conditioning
x ∈ Jn on the event V(x) = w (see [8] for an overview of this area).

Theorem 1.20. Let 0 < n−1 � γ, κ, k−1, D−1, C−1 < 1 and R ∈ RD with maxdRd < nC . Suppose
V = (vij) is an R-bounded γ-robustly (R, k)-generating (n, J)-array in ZD, and w ∈ ZD such that

µpVw is κ-bounded. Let ν be the uniform distribution on ∆n := (Jn)Vw. Then µpVw ≈∆ ν.

To apply Theorem 1.20 under combinatorial conditions, we will use the following lemma which
shows that µpVw is κ-bounded under our general position condition on V. (See also Section 4 for a
more general result based on VC-dimension that applies to larger alphabets.)

Lemma 1.21. Let 0 < n−1 � κ � γ, γ′ � α,D−1. Suppose V = (vi) is an R-bounded γ′-robustly
(γ,R)-generic (n, {0, 1})-array in ZD and |({0, 1}n)Vw| ≥ (1 + α)n. Then µVw is κ-bounded.

Alexander Barvinok remarked (personal communication) that similar results to Theorem 1.20
and Lemma 1.21 were obtained by Barvinok and Hartigan in [3]. Theorem 3 of [3] gives stronger

2The entropy of a distribution µ defined on a finite set X is H(µ) =
∑
x∈X −µ(x) log2 µ(x).
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bounds on |({0, 1}n)Vw| where applicable, but their assumptions are very different to ours (they
assume bounds for quadratic forms of certain inertia tensors), and they also require that the vectors
all operate at the ‘same scale’, so their results do not apply to the Kalai vectors. Although our bounds
are weaker, our proofs are considerably shorter, and furthermore, stronger bounds here would not
give any improvements elsewhere in our paper, as they account for a term subexponential in n, while
our working tolerance is up to a term exponential in n.

1.4 Supersaturation

We now give a brief overview of the strategy for combining the results of the previous two subsections
to prove supersaturation, and also indicate the conditions that determine which case of Theorem 1.11
holds. Under the set up of Theorem 1.11, a telegraphic summary of the argument is:

|A| ≥ (1− δ)n|X | Theorem 1.20
=⇒ µpVz (A) ≥ (1− δ′)n Theorem 1.17

=⇒ µq((A×A)V∩w ) ≥ (1− ε)n,

where µq is chosen to optimise the lower bound on |(A×A)V∩w | implied by the final inequality.

The best possible supersaturation bound (case i of Theorem 1.11) arises when Theorem 1.17 is
applicable with µq equal to the maximum entropy measure µq̃ that represents (X ×X )V∩w : this case
holds when µq̃ is κ-bounded and has marginals µp̃ close to µp := µpVz .

Case ii of Theorem 1.11 holds if µq̃ is κ-bounded but µp̃ is not close to µp: then µp̃ is concentrated
on a small subset Bfull of X , which is responsible for almost all w-intersections in X .

Lastly, case iii of Theorem 1.11 holds if µq̃ is not κ-bounded. The key to understanding this case
is the well-known [31] Vapnik-Chervonenkis dimension, defined as follows.

Definition 1.22. We say that A ⊂ Jn shatters X ⊂ [n] if for any (jx : x ∈ X) ∈ JX there is a ∈ A
with ax = jx for all x ∈ X. The VC-dimension dimV C(A) of A is the largest size of a subset of [n]
shattered by A.

To see why it is natural to consider the VC-dimension, consider the problem of finding an inter-
section of size n/3 among subsets of [n] of size 2n/3. The conditions of the Frankl-Rödl theorem

are not satisfied with these parameters, and indeed the conclusion that every family from
( [n]

2n/3

)
of density (1 − o(1))n contains an n/3 intersection is not true: take A = {A ∈

( [n]
2n/3

)
: 1 /∈ A}.

Considering
( [n]

2n/3

)
×n/3

( [n]
2n/3

)
as a subset of ({0, 1}×{0, 1})n, we see that no coordinate can take the

value (0, 0), so there is not even a shattered set of size 1! Modifying this example in the obvious way
we see that it is natural to assume a bound that is linear in n. We also note that this example shows
that the ‘Frankl-Rödl analogue’ of Conjecture 1.2 is not true (i.e. although

([n]
k

)
×t
([n]
k

)
is exponen-

tially large, there are exponentially dense subsets of
([n]
k

)
with no t intersections) and hints towards

a counterexample for Kalai’s conjecture. More generally, we will prove that κ-boundedness of µq is
roughly equivalent to the VC-dimension of (X × X )V∩w being large as a subset of ({0, 1} × {0, 1})n
(see Lemma 4.8). Case iii of Theorem 1.11 will apply when (X × X )V∩w has low VC-dimension.

The above outline also gives some indication of how the values in Theorem 1.3 arise. As described
above, the supersaturation conclusion desired by Conjecture 1.2 (case i of Theorem 1.11) needs µq̃
to have marginals µp̃ close to µp := µpVz . We can describe µq̃ and µp explicitly using Lagrange
multipliers: they are Boltzmann distributions (see Lemma 10.1). In general, it is not possible for one
Boltzmann distribution to be a marginal of another, which explains why Conjecture 1.2 is generally
false. An analysis of the special conditions under which it is possible gives rise to the characterisation
of Γ in Theorem 1.3.
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The outline also suggests a possible characterisation of the optimal level of supersaturation in
all cases (i.e. including those for which Kalai’s conjecture fails). Any choice of µq satisfying the
hypotheses of Theorem 1.17 with marginal distributions µVz gives a lower bound on |(A×A)V∩w |, and
the optimal such lower bound is obtained by taking such a measure with maximum entropy. Is this
essentially tight? We wil give a positive answer to this question by proving a matching upper bound
in Section 11.

Finally, we remark that our method allows different vectors defining the sizes of intersections
from those defining the sizes of sets in the family, i.e. V ′-intersections in ({0, 1}n)Vz ; in Section 6.3
we show such an application to give a new proof of a theorem of Frankl and Rödl [11, Theorem 1.15]
on intersection patterns in sequence spaces.

1.5 Organisation of the paper

In the next section we collect some probabilistic methods that will be used throughout the paper.
We prove the large deviation principle (Theorem 1.20) in Section 3. In Section 4 we establish the
connection between VC-dimension and boundedness of maximum entropy measures. Section 5 is
expository: we give two concrete counterexamples to Kalai’s Conjecture 1.2. As mentioned above,
the reader may wish to first read this section and then return to fill in the details. Next we introduce
a more general setting in Section 6, state our most general result (Theorem 6.3), and show that it
implies our probabilistic intersection theorem (Theorem 1.17). In Section 7 we prove a correlation
inequality needed for the proof of Theorem 6.3; as far as we are aware, the inequality is quite unlike
other such inequalities in the literature. We prove Theorem 6.3 in Section 8, and then deduce
our main theorem (1.11) in Section 9. Our corrected form of Kalai’s conjecture (Theorem 1.3) is
proved in Section 10; we also show here in much more generality that supersaturation of the form
conjectured by Kalai is rare. In Section 11 we give a complete characterisation of the optimal level
of supersaturation in terms of a certain optimisation problem for measures. Lastly, in section 12 we
recast our results in terms of ‘exponential continuity’: a notion that arises naturally when comparing
distributions according to exponential contiguity, and may be interpreted in terms of robust statistics
for social choice: this point and several potential directions for future research are addressed in the
concluding remarks.

1.6 Notation

We identify subsets of a set with their characteristic vectors: A ⊂ X corresponds to a ∈ {0, 1}X ,
where ai = 1 ⇔ i ∈ A. The Hamming distance between vectors a and a′ in a product space Jn is
d(a,a′) = |{i ∈ [n] : ai 6= a′i}|. Given a set X, we write

(
X
k

)
= {A ⊂ X : |A| = k}. We write δ � ε

to mean for any ε > 0 there exists δ0 > 0 such that for any δ ≤ δ0 the following statement holds.
Statements with more constants are defined similarly. We write a = b± c to mean b− c ≤ a ≤ b+ c.
Throughout the paper we omit floor and ceiling symbols where they do not affect the argument. All
vectors appear in boldface.

2 Probabilistic methods

In this section we gather several probabilistic methods that will be used throughout the paper:
concentration inequalities, entropy, an application of Dependent Random Choice to the independence
number of product graphs, and an alternative characterisation of exponential contiguity.
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2.1 Concentration inequalities

We start with the well-known Chernoff bound (see e.g. [1, Appendix A]).

Lemma 2.1 (Chernoff’s inequality). Suppose t ≥ 0 and X :=
∑

i∈[n]Xi, where X1, . . . , Xn are
independent random variables with |Xi − EXi| ≤ ai for all i ∈ [n]. Then P(|X − EX| ≥ t) ≤
2e−t

2/(2
∑n
i=1 a

2
i ).

An easy consequence is the following concentration inequality for random sums of vectors.

Lemma 2.2. Suppose µp is a product measure on Jn, and V = (vij) is an R-bounded (n, J)-array

in ZD. Let X = V(a) with a ∼ µp and t ≥ 0. Then P(‖X − EX‖R ≥ t) ≤ 2De−t
2/8n.

Proof. For each d ∈ D, we have Xd =
∑

i∈[n]Xd,i, where Xd,i(a) = viai,d are independent random
variables with |Xd,i| ≤ Rd for all i ∈ [n]. By Chernoff’s inequality we have P(|Xd − EXd| ≥ tRd) ≤
2e−t

2/8n, so the lemma follows from a union bound. �

We will also use the following consequence of Azuma’s martingale concentration inequality (see
e.g. [25]). We say that f : Jn → R is b-Lipschitz if for any a,a′ ∈ Jn differing only in a single
coordinate we have |f(a)− f(a′)| ≤ b.

Lemma 2.3. Suppose Z = (Z1, . . . , Zn) is a sequence of independent random variables, and X =
f(Z), where f is b-Lipschitz. Then P(|X − EX| > a) ≤ 2e−a

2/2nb2.

2.2 Entropy

In this subsection we record some basic properties of entropy (see [7] for an introduction to informa-
tion theory). The entropy of a probability distribution p = (p1, . . . , pn) is H(p) = −

∑
i∈[n] pi log2 pi.

The entropy of a random variable X taking values in a finite set S is H(X) = H(p), where
p = (ps : s ∈ S) is the law of X, i.e. ps = P(X = s). When p = (p, 1 − p) takes only two
values we write H(p) = H(p) = −p log2 p− (1− p) log2(1− p).

Entropy is subadditive: if X = (X1, . . . , Xn) then H(X) ≤
∑n

i=1H(Xi), with equality if and
only if the Xi are independent. An equivalent reformulation is the following lemma.

Lemma 2.4. Suppose µ is a probability measure on
∏
s∈[S] Js with marginals (µs : s ∈ [S]). Then

H(µ) ≤
∑

s∈[S]H(µs), with equality if and only if µ =
∏
s∈[S] µs.

It is easy to deduce Lemma 1.18 from Lemma 2.4. Indeed, consider µ ∈ MVw with maximum
entropy. Let pij = Px∼µ(xi = j). Then w = V(µ) =

∑
i∈[n],j∈J p

i
jv

i
j , so the product measure µp

is in MVw, and H(µ) ≤ H(µp), with equality if and only if µ = µp. As MVw is convex, uniqueness
follows from strict concavity of the entropy function, which we will now prove in a stronger form
(see Lemma 2.6 below). It is often convenient to use the notation H(p) =

∑
i∈[n] L(pi), where

L(p) = −p log2 p = −p log p
log 2 . Note that L′(p) = −1+log p

log 2 and L′′(p) = − 1
p log 2 < 0, so L is strictly

concave. The following lemma is immediate from these formulae and the mean value form of Taylor’s
theorem: f(a+ t) = f(a) + f ′(a)t+ f ′′(a+ t′)t2/2 for some 0 < t′ < t.

Lemma 2.5. If |t| < min(p, 1− p) then

i. L(p+ t)− L(p) = −
(1+log p

log 2

)
t± (p− |t|)−1t2,

ii. L(p+ t) + L(p− t)− 2L(p) ≤ − t2

log 2 .
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We deduce the following ‘stability version’ of the uniqueness of the maximum entropy measure,
which quantifies the decrease in entropy in terms of distance from the maximiser.

Lemma 2.6. Suppose µp = µVz and µp̃ ∈MVz . If ‖p− p̃‖1 > δn then H(p̃) < H(p)− δ2n.

Proof. Let p′ = (p + p̃)/2 and note that µp′ ∈MVz . By definition of µVz we have H(µp′) ≤ H(µp),
so H(µp)−H(µp̃) ≥ 2H(µp′)−H(µp)−H(µp̃) ≥

∑
i∈[n](pi− p̃i)2 ≥ δ2n, by Lemma 2.5 ii and then

Cauchy-Schwarz. �

We conclude this subsection with a perturbation lemma.

Lemma 2.7. Suppose µ is a probability distribution on X and − log2 µ(x) > H(µ) for some x ∈ X.
Then there is t > 0 such that ν = (1− t)µ+ t1x has H(ν) > H(µ).

Proof. For µ(x) 6= 0, for small enough t by Lemma 2.5 i we have

L(ν(x))− L(µ(x)) = (ν(x)− µ(x))L′(µ(x))± 2µ(x)−1(ν(x)− µ(x))2

= −
(1 + log2 µ(x)

2

)
(1− µ(x))t−O(t2).

If y 6= x and µ(y) = 0 then L(ν(y)) − L(µ(y)) = 0. Therefore, by Lemma 2.5(i), for all y 6= x we
have

L(ν(y))− L(µ(y)) =
(1 + log2 µ(y)

2

)
µ(y)t−O(t2). (3)

All combined, this gives

H(ν)−H(µ) =
∑
y∈X

L(ν(y))− L(µ(y)) =
∑
y∈X

(1 + log2 µ(y)

2

)
µ(y)t−

(1 + log2 µ(x)

2

)
t−O(t2)

= t
(
− log2 µ(x)

2
− H(µ)

2
−O(t)

)
> 0,

for small t > 0. The case µ(x) = 0 is similar, using L(ν(x))− L(µ(x)) = −t log2 t with (3). �

2.3 Dependent Random Choice

We will use the following version of Dependent Random Choice (see [23, Lemma 11] for a proof and
[10] for a comprehensive survey of the method). We write NG(u, u′) := {v ∈ V (G) : uv, u′v ∈ E(G)}
for the set of common neighbours of u and u′ in a graph G.

Lemma 2.8. Let t ∈ N and G = (V1, V2, E) be a bipartite graph with |Vi| = Ni and |E| = αN1N2.

Then there is U ⊂ V1 with |U | ≥ αtN1/2 such that |NG(u, u′)| ≥ αN−1/t
1 N2 for all u, u′ ∈ U .

The following is an immediate consequence of Lemma 2.8, applied with t = d2/cεe.

Lemma 2.9. Let 0 < N−1 � δ � ε, c < 1. Suppose G = (V1, V2, E) is a bipartite graph with

each |Vi| = Ni, where N ≤ N c
1 ≤ N2 ≤ N

1/c
1 and e(G) > (N1N2)1−δ. Then there is U ⊂ V1 with

|U | > N1−ε
1 such that |NG(u, u′)| > N1−ε

2 for all u, u′ ∈ U .

We say that S ⊂ V (G) is independent if it contains no edges of G. The independence number
α(G) of G is the maximum size of an independent set in G. Given graphs G1, . . . , Gk, we write
G1 × · · · × Gk for the graph on vertex set V (G1) × · · · × V (Gk), in which vertices (u1, · · · , uk) and
(v1, · · · , vk) are joined by an edge if uivi ∈ E(Gi) for all i ∈ [k].
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Lemma 2.10. Let 0 < N−1 � δ � ε, c < 1 and N ≤ N c
1 ≤ N2 ≤ N

1/c
1 . Suppose for i = 1, 2 we

have graphs Gi on Vi with |Vi| = Ni and α(Gi) ≤ N1−ε
i . Then α(G1 ×G2) ≤ (N1N2)1−δ.

Proof. Suppose E ⊂ V1×V2 with |E| > (N1N2)1−δ. Consider the bipartite graphG = (V1, V2, E). Let
U be as in Lemma 2.9. As |U | > α(G1), there is an edge u1u2 of G1 in U . As |NG(u1, u2)| > α(G2),
there is an edge v1v2 of G2 in NG(u1, u2). Then (u1, v1)(u2, v2) ∈ E, so E is not independent in
G1 ×G2. �

By repeated application of the previous lemma, we obtain the following corollary.

Lemma 2.11. Let 0 < N−1 � δ � ε, c, k−1 < 1 and N1, . . . , Nk ∈ N with N ≤ N c
i ≤ Nj ≤ N1/c

i for
all i, j ∈ [k]. Suppose for i ∈ [k] we have graphs Gi on Vi with |Vi| = Ni and α(Gi) ≤ N1−ε

i . Then

α(G1 × · · · ×Gk) ≤ (N1 · · ·Nk)
1−δ.

2.4 Exponential Contiguity

We conclude this section with an alternative characterisation of exponential contiguity.

Lemma 2.12. µ .∆ µ′ if and only if for n−1 � δ � ε � 1 and Bn = {x ∈ ∆n : µ′n(x) <
(1− ε)nµn(x)} we have µn(Bn) ≤ (1− δ)n.

Proof. Let n−1 � δ � ε� 1. Suppose first that if An ⊂ ∆n with µn(An) > (1−δ)n then µ′n(An) >
(1 − ε)n. As µ′n(Bn) ≤ (1 − ε)nµn(Bn) ≤ (1 − ε)n, we cannot have µn(Bn) > (1 − δ)n, so we have
µn(Bn) ≤ (1− δ)n. Conversely, suppose µn(Bn) ≤ (1− δ)n and An ⊂ ∆n with µn(An) > (1− δ/2)n.
Then µ′n(An) ≥ µ′n(An \Bn) ≥ (1− ε)nµn(An \Bn) > (1− 2ε)n. �

3 Large deviations of fixed sums

In this section we prove Theorem 1.20. Our first lemma will be used to show that the maximum
entropy measure is exponentially dominated by the uniform measure.

Lemma 3.1. Let 0 < n−1 � η � κ, |J |−1 � 1. Suppose µp is a κ-bounded product measure on Jn.
Let B = {x ∈ Jn : log2 µp(x) /∈ −H(µp)± ηn}. Then µp(B) ≤ (1− η3)n.

Proof. Consider x ∼ µp and X := log2 µp(x) =
∑

i∈[n]Xi, where Xi =
∑

j∈J 1xi=j log2(pij). As µp

is κ-bounded, the Xi satisfy |Xi − E(Xi)| ≤ log2(κ−1) for all i ∈ [n]. As these random variables are
independent and EX = −H(µp), the bound on µp(B) follows from Chernoff’s inequality. �

Our next lemma gives a lower bound for point probabilities of maximum entropy measures, which
implies an upper bound on the number of solutions of V(x) = w.

Lemma 3.2. Suppose V = (vij) is an (n, J)-array in ZD and w ∈ ZD and µp = µpVw . Then for all

x ∈ (Jn)Vw we have − log2 µp(x) ≤ H(µp). In particular, log2 |(Jn)Vw| ≤ H(µp).

Proof. If some x ∈ (Jn)Vw satisfies − log2 µp(x) > H(µp) then Lemma 2.7(i) shows that ν =
(1 − t)µp + t1x satisfies H(ν) > H(µp) for some t > 0. However as ν ∈ MVw this would contradict
the choice of pVw. The second statement now follows as |(Jn)Vw|2−H(µp) ≤

∑
x µp(x) ≤ 1. �

Our final lemma will give an approximate formula for the number of solutions of V(x) = w (as
mentioned in the introduction, [3, Theorem 3] gives stronger bounds under different hypotheses).
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First we require a small set that efficiently generates ZD, as described by the following definition
and associated lemma, which shows that such a set exists under the mild assumption of polynomial
growth for the coordinate scale vector R (this will also be used later in Theorem 6.3).

Definition 3.3. We say that U ⊂ ZD is (k,B,R)-generating if for any v ∈ ZD we have v =∑
u∈U cuu, with each cu ∈ Z with |cu| ≤ k‖v‖R +B.

Lemma 3.4. If n−1 � β,C−1, D−1 and maxdRd < nC then there is a (1, βn,R)-generating R-
bounded U ⊂ ZD with |U| ≤ D(C + 2).

Proof. Let U be the set of all u = (u1, . . . , uD) such that for some d ∈ [D] we have ud′ = 0 for all
d′ 6= d and ud = Rd or ud = bβncad ∈ [Rd] for some integer ad ≥ 0. �

Lemma 3.5. Let 0 < n−1 � λ� δ � γ, κ, k−1, D−1, C−1 < 1 and R ∈ RD with maxdRd < nC .

Suppose

i. V = (vij) is an R-bounded γ-robustly (R, k)-generating (n, J)-array in ZD,

ii. µp is a κ-bounded product measure on Jn with ‖EV(x)−w‖R ≤ λn, where w ∈ ZD.

Then log2 |(Jn)Vw| ≥ H(µp)− δn; in particular, (Jn)Vw 6= ∅.
Thus, if the maximum entropy measure µpVw is κ-bounded then log2 |(Jn)Vw| = H(µpVw)± δn.

Proof. We first note that the final statement of the lemma follows from the first: the latter gives
the lower bound, as EV(x) = w when x ∼ µpVw , and the upper bound follows from Lemma 3.2.

It remains to prove the first statement of the lemma. Let F be the set of x ∈ Jn such that there
is x′ ∈ (Jn)Vw with Hamming distance d(x,x′) < δ2n. We claim that µp(F) > 1/2.

First we assume the claim and deduce the lower bound. Given x ∈ F there is x′ ∈ (Jn)Vw
with Hamming distance d(x,x′) < δ2n and so |F| ≤ |{(x,x′) ∈ Jn × (Jn)Vw : d(x,x′) < δ2n}| ≤
|(Jn)Vw|

(
n
δ2n

)
|J |δ2n, and as |J | ≤ κ−1 � δ−1 this gives log2 |(Jn)Vw| ≥ log2 |F| − δ3/2n. Now let

B = {x ∈ Jn : log2 µp(x) > −H(µp) + δ2n}. We have µp(B)� 1/4 by Lemma 3.1, so µp(F \ B) ≥
µp(F)−µp(B) ≥ 1/4 by the claim. The definition of B gives log2 |F \B|−H(µp)+δ2n ≥ log2 µp(F \
B) ≥ −2, so log2 |(Jn)Vw| ≥ log2 |F| − δ3/2n ≥ log2 |F \ B| − δ3/2n ≥ H(µp)− δn, as required.

To prove the claim, we consider x ∼ µp and show that with probability at least 1/2 there is
x′ ∈ (Jn)Vw with d(x,x′) < δ2n. Let B1 be the event that ‖V(x) −w‖R ≥ δ3n. If B1 holds, by the
triangle inequality ‖V(x)−EV(x)‖R ≥ δ3n−λn ≥ δ3n/2 and so P(B1) ≤ 2De−δ

6n/27 by Lemma 2.2.
Next, by Lemma 3.4 we can fix some (1, δ2n,R)-generating R-bounded U = {u1, . . . ,uM} ⊂ ZD
with M ≤ D(C + 2). Since V is γ-robustly (R, k)-generating, by repeatedly applying Definition 1.9,
we can choose pairwise disjoint Smt ⊂ [n] for each m ∈ [M ] and t ∈ [γn/kM ] with each |Smj | ≤ k
and ji, j

′
i ∈ J for all i ∈ Smt such that um =

∑
i∈Smt(v

i
ji
− vij′i

). Let B2 be the event that for some

m we have |{t : xi = ji ∀i ∈ Smt}| < κkγn/2kM or |{t : xi = j′i ∀i ∈ Smt}| < κkγn/2kM . Then
P(B2) < e−δn by Chernoff’s inequality.

Thus with probability at least 1− e−δ7n > 1/2 neither B1 or B2 holds for x. As U is (1, δ3n,R)-
generating and ‖V(x) − w‖R < δ3n, we have V(x) − w =

∑
m∈[M ] cmum, with each cm ∈ Z with

|cm| ≤ 1 · ‖V(x) −w‖R + δ3n ≤ 2δ3n. Now we modify x to obtain x′, where for each m ∈ [M ], if
cm > 0 we fix cm values of t such that xi = ji for all i ∈ Smt and let x′i = j′i for all such i, and if
cm < 0 we fix cm values of t such that xi = j′i for all i ∈ Smt and let x′i = ji for all such i. Then
V(x′) = w, i.e. x′ ∈ (Jn)Vw, and d(x,x′) < k

∑
m∈[M ] |cm| < δ2n. This completes the proof of the

claim, and so of the lemma. �

We deduce Theorem 1.20, which states that under the hypotheses of the above lemmas, we have
µp ≈∆ ν, where µp = µpVw , and ν is the uniform distribution on ∆n := (Jn)Vw.
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Proof of Theorem 1.20. Let 0 < n−1 � δ � ε � γ, κ, k−1, D−1, C−1 < 1. Note that ν(x) =
|(Jn)Vw|−1 for all x ∈ (Jn)Vw, and log2 |(Jn)Vw| = H(µp)± δn by Lemma 3.5.

Consider C = {x ∈ ∆n : µp(x) < (1 − ε)nν(x)}. If there is x ∈ C then log2 µp(x) <
− log2 |(Jn)Vw| − εn < H(µp), which contradicts Lemma 3.2, so C = ∅. Thus ν .∆ µp by Lemma
2.12.

Now consider C′ = {x ∈ ∆n : ν(x) < (1 − ε)nµp(x)}. For any x ∈ C′ we have log2 µp(x) >
− log2 |(Jn)Vw|+ εn, so log2 µp(C′) < −ε3n < −δn by Lemma 3.1, i.e. µp .∆ ν. �

4 Boundedness, feasibility and universal VC-dimension

In this section we will give several combinatorial characterisations of the boundedness condition on
maximum entropy measures required in our probabilistic intersection theorem. The characterisations
hold under the following ‘multiscale general position’ assumption, which extends Definition 1.10 to
all finite alphabets (by ‘multiscale’ we mean that the parameter γ can be arbitrary, which is true of
the Kalai vectors).

Definition 4.1. (robustly generic) Suppose V = (vij) is an (n, J)-array in ZD. Let I ∈
([n]
D

)
and

c = (ci : i ∈ I) with ci ∈ RJ and
∑

j∈J c
i
j = 0 for all i ∈ I.

We say that (I, c) is (γ,R)-generic for V if all |cij | ≤ γ−1, and writing wi =
∑

j∈J c
i
jv

i
j and

W = (wid : i ∈ I, d ∈ [D]), we have |det(W )| ≥ γ
∏
d∈[D]Rd.

We say that V is γ′-robustly (γ,R)-generic if for any X ⊂ [n] with |X| > γ′n there is some (I, c)
with I ⊂ X that is (γ,R)-generic for V.

We say that a sequence (Vn,Rn) of (n, J)-arrays and scalings is robustly generic if Vn is γ′-robustly
(γ,Rn)-generic whenever n−1 � γ � γ′.

It will also be convenient to use the following sequence formulation of Definition 1.9.

Definition 4.2. We say that (Vn,Rn) is robustly generating if there are γ > 0 and k, n0 ∈ N such
that Vn is γ-robustly (Rn, k)-generating for all n > n0.

Next we will define the combinatorial conditions that appear in our characterisation. We recall
the definition of VC-dimension and also define a universal variant that will be important in the proof
of Theorem 1.11 in section 9.

Definition 4.3. We say that A ⊂ Jn shatters X ⊂ [n] if for any (jx : x ∈ X) ∈ JX there is a ∈ A
with ax = jx for all x ∈ X.

The VC-dimension dimV C(A) of A is the largest natural k such that A shatters some subset of
[n] of size k.

The universal VC-dimension dimUV C(A) of A is the largest natural k such that A shatters every
subset of [n] of size k.

Next we give a feasibility condition, which can be informally understood as saying that we can
solve any small perturbation of the equation Vn(x) = zn.

Definition 4.4. Let (Vn,Rn, zn) be a sequence of (n, J)-arrays, scalings and vectors in ZD. We say
(Vn,Rn, zn) is λ-feasible if there is n0 such that for any n > n0, any z′n ∈ ZD with ‖z′n−zn‖Rn ≤ λn,

and any (n′, J)-array V ′n′ obtained from Vn by deleting at most λn co-ordinates, we have (Jn
′
)
V ′
n′

z′n
6= 0.
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Our final property appears to be a substantial weakening of our κ-boundedness condition, so it
is quite surprising that it also gives a characterisation.

Definition 4.5. Suppose µp is a product measure on Jn. We say that µp is κ-dense if there are at
least κn coordinates i ∈ [n] such that pij ≥ κ for all j ∈ J .

Now we can state the main theorem of this section. The sense of the equivalences in the statement
is that the implied constants are bounded away from zero together. For example, the implication
ii⇒ i means that for any δ > 0 there is ε > 0 such that if µVnzn is δ-dense then µVnzn is ε-bounded.

Theorem 4.6. Let (Vn,Rn) be a robustly generic and robustly generating sequence of (n, J)-arrays
and scalings in ZD, and (zn) a sequence of vectors in ZD. The following are equivalent:

i. µVnzn is Ω(1)-bounded.
ii. µVnzn is Ω(1)-dense.

iii. dimV C((Jn)Vnzn ) = Ω(n).
iv. dimUV C((Jn)Vnzn ) = Ω(n).
v. (Vn,Rn, zn) is Ω(1)-feasible.

The main step in the proof of Theorem 4.6 is Lemma 4.8, which provides the implication iii⇒ i.
It also implies Lemma 1.21, as for binary vectors the following coarse version of the Sauer-Shelah
theorem shows that linear VC-dimension is equivalent to exponential growth.

Lemma 4.7. [27, 29] For A ⊂ {0, 1}n we have dimV C(A) = Ω(n)⇔ log2 |A| = Ω(n).

Lemma 4.8. Let 0 < n−1 � κ � γ, γ′ � λ � D−1, |J |−1. Suppose V = (vij) is an R-bounded

γ′-robustly (γ,R)-generic (n, J)-array in ZD. If dimV C((Jn)Vw) ≥ λn then µVw is κ-bounded.

The proof of Lemma 4.8 is immediate from the next two lemmas, which give the implications
iii⇒ ii and ii⇒ i of Theorem 4.6.

Lemma 4.9. Let 0 < n−1 � κ� λ� D−1, |J |−1. Suppose V is an (n, J)-array in ZD. Let w ∈ ZD
and p = pVw. If dimV C((Jn)Vw) ≥ λn then µp is κ-dense.

Proof. Fix Z with |Z| > λn such that (Jn)Vw shatters Z. Suppose for a contradiction that µp is
not κ-dense. Then we have Y ⊂ Z with |Y | ≥ |Z|/2 and (j′y : y ∈ Y ) ∈ JY such that pyj′y

< κ for

all y ∈ Y . As (Jn)Vw shatters Z, we can choose j ∈ (Jn)Vw with jy = j′y for all y ∈ Y . Note that

µp(j) ≤ κ|Y | ≤ κλn/2, so − log2 µp(j) ≥ −(log κ)λn/2 > |J |n > H(µp). By Lemma 2.7 we can find
ν = (1− t)µp + t1j ∈MVw with H(ν) > H(µp). This contradicts the definition of µVw. �

Lemma 4.10. Let 0 < n−1 � κ � γ, γ′ � λ � D−1, |J |−1. Suppose V = (vij) is an R-bounded

γ′-robustly (γ,R)-generic (n, J)-array in ZD. Let p = pVw. If µp is λ-dense then µp is κ-bounded.

Proof. As µp is λ-dense, we can fix Y ⊂ [n] with |Y | ≥ λn such that pij ≥ λ for all i ∈ Y and j ∈ J .
As V is γ′-robustly (γ,R)-generic, we can fix (I, c) with I ⊂ Y that is (γ,R)-generic for V, i.e. all
|cij | ≤ γ−1,

∑
j∈J c

i
j = 0 for all i ∈ I, and writing wi =

∑
j∈J c

i
jv

i
j and W = (wid : i ∈ I, d ∈ [D]), we

have | det(W )| ≥ γ
∏
d∈[D]Rd.

Now we show that µp is κ-bounded. For suppose on the contrary that pi
′
j′ < κ for some i′ ∈ [n]

and j′ ∈ J . Fix j′′ ∈ J such that pi
′
j′′ ≥ |J |−1. As (wi : i ∈ I) are linearly independent, we

can write vi
′
j′′ − vi

′
j′ =

∑
i∈I biw

i. By Cramer’s rule we have bi = det(W )−1 det(Wi), where Wi is
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the matrix obtained from W by replacing wi with vi
′
j′′ − vi

′
j′ . As V is R-bounded, we can write

det(Wi) = det(Ai)
∏
d∈D Rd, where all entries of Ai have modulus at most 1, so | det(Ai)| ≤ D! (or

DD/2 by Hadamard’s inequality). Therefore |bi| ≤ D!γ−1 for all i ∈ I.

Consider a product measure µp′ where for some t > 0 we have p′ij = pij + tbic
i
j for all i ∈ I

and j ∈ J , p′i
′
j′ = pi

′
j′ + t, p′i

′
j′′ = pi

′
j′′ − t, and p′ij = pij otherwise. Note that Ex∼µp′

∑
i∈[n] v

i
xi =

Ex∼µp
∑

i∈[n] v
i
xi + t

∑
i∈I,j∈J bic

i
jv

i
j + tvi

′
j′ − tvi

′
j′′ = Ex∼µp

∑
i∈[n] v

i
xi = w, so µp′ ∈MVw.

We claim that we can choose t > 0 such that H(µp′) > H(µp). This will contradict the definition
of µVw, showing that µp is κ-bounded. To see this, note that H(µp′)−H(µp) =

∑
i∈I∪{i′}(H(p′i)−

H(pi)) and H(p′i) − H(pi) = −
∑

j∈J
[
p′ij log2(p′ij ) − pij log2(pij)

]
for each i ∈ [n]. Also, by Lemma

2.5 i, we have −(p+ t) log2(p+ t) + p log2 p = −
(1+log p

log 2

)
t± (p− |t|)−1t2 = log2(p−1)t± 4t provided

|t| < 1
2 min(p, 1− p). If pi

′
j′ > 0 then for t < 1

2 min
(
pi
′
j′ , 1− pi

′
j′ , (2|J |)−1

)
this gives

H(p′i
′
)−H(pi

′
) ≥ −t log2 κ− 4t− 3t log2 |J | − 2|J |t2,

using pi
′
j′ < κ, pi

′
j′′ ≥ |J |−1 and |J | ≥ 2. If instead pi

′
j′ = 0 then for t < min(κ, (2|J |)−1) we have

H(p′i
′
)−H(pi

′
) ≥ −t log2 κ− 3t log2 |J | − 2|J |t2,

Lastly, we have
H(p′i)−H(pi) ≥ 2|J |D!γ−2t log λ− 2λ−1|J |(tD!γ−2)2

for i ∈ I, as all |bicij | ≤ D!γ−2 and pij ∈ (λ, 1 − λ). Thus the dominant term in H(µp′) −H(µp) as
t→ 0 is −t log2 κ, and so we can choose t > 0 so that H(µp′)−H(µp) > 0, as required. �

Proof of Theorem 4.6. It remains to prove the implications i⇒ v and v ⇒ iv (note that iv ⇒ iii
is trivial).

For i ⇒ v, let n−1 � λ � κ � γ, k−1, suppose Vn is γ-robustly (Rn, k)-generating, µVnzn is
κ-bounded, z′n ∈ ZD with ‖z′n − zn‖Rn ≤ λn, and V ′ is obtained from Vn by deleting S ⊂ [n]
with |S| ≤ λn. Then V ′ is Rn-bounded and (γ/2)-robustly (Rn, k)-generating. Also, the restriction
µp′ of µVnzn to J [n]\S is κ-bounded, and Ex∼µp′V

′(x) = z∗, where ‖z∗ − z′n‖Rn ≤ 2λn. Therefore

(J [n]\S)
V ′
n′

z′n
6= ∅ by Lemma 3.5, as required.

For v ⇒ iv, let n−1 � κ, and suppose (Vn,Rn, zn) is κ-feasible. Fix S ⊂ [n] with |S| = κn and
y ∈ JS . We need to show that there is x ∈ (Jn)Vnzn with x|S = y. Let V ′, V0 be obtained from Vn by
respectively deleting, retaining the coordinates of S. Let z′n = zn −V0(y). Then ‖z′n − zn‖Rn ≤ κn,

so by definition of κ-feasibility we can find x′ ∈ (J [n]\S)
V ′
n′

z′n
. Then x = (x′,y) is as required. �

We conclude this section by noting the following lemma which is immediate from the preceding
proof and Lemma 4.8.

Lemma 4.11. Let 0 < n−1 � λ � γ, γ′ � α,D−1, J−1. Suppose V = (vij) is an R-bounded,

γ-robustly (R, k)-generating, γ′-robustly (γ,R)-generic (n, J)-array in ZD.

Let w ∈ ZD with dimV C((Jn)Vw) ≥ αn. Then dimUV C((Jn)Vw) ≥ λn.

5 Counterexamples to Conjecture 1.2

Theorem 1.3 will precisely describe the conditions under which the conclusion of Conjecture 1.2
is valid, and so show the existence of counterexamples in most cases. However, our proof is not
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constructive, so for expository purposes, in this section we will present two concrete counterexamples,
each illustrating a different ‘breaking point’ of Theorem 1.11. The first will illustrate case ii by
showing that we may have [n]k,s ×(t,w) [n]k,s large, but very few sets in [n]k,s are involved in any
(t, w)-intersection. The second will illustrate case iii by showing that we may have almost all sets in
[n]k,s involved in some (t, w)-intersection, but a large subset of [n]k,s containing no (t, w)-intersections.
The first example also shows that cases ii and iii can hold simultaneously.

Counterexample 1: Set α1 = 1/2 and α2 = 7/16 and β1 = 1/4 and β2 = 1/16 + ζ, where ζ > 0
is small to be selected. Given n ∈ N, take k, s, t and w as in Conjecture 1.2. We will show that
|[n]k,s ×(t,w) [n]k,s| > (1 + c)n for some constant c > 0 but that there is a set A ⊂ [n]k,s with
|A| ≥ (1− o(1))

∣∣[n]k,s
∣∣ satisfying A×(t,w) A = ∅.

First we show that |[n]k,s×(t,w) [n]k,s| is large. To see this, we start by finding C ⊂ [(1/4+ζ1/2)n]

with (|C|,
∑

(C)) = (t, w). Let C0 = [t] and note that
∑

(C0) =
(
t+1

2

)
< w. By a sequence of moves,

each removing some i and adding i + 1, we can obtain C1 = [(1/4 + ζ1/2)n − t + 1, (1/4 + ζ1/2)n],
with

∑
(C1) > w. Clearly some intermediate set has (C,

∑
(C)) = (t, w). A similar argument gives

a set S ⊂ [(1/4 + ζ1/2)n+ 1, n] with
(
|S|,

∑
(S)
)

= 2(k− t, s−w). Next we note that the maximum
entropy measure µp̃ on {0, 1}S with

∑
i∈S p̃i(1, i) = (k − t, s − w) is the constant vector (1/2)i∈S .

By Theorem 1.20 we deduce |{D ⊂ S : (|D|,
∑

(D)) = (k − t, s − w)}| = 2(1−o(1))|S| = 2(1/2−o(1))n.
However, for any D ⊂ S with (D,

∑
(D)) = (k− t, s−w) we have (E,

∑
(E)) = (k− t, s−w), where

E = S \D. Taking A = C ∪D and B = C ∪E we find (A,B) ∈ [n]k,s ×(t,w) [n]k,s. We have at least

as many (t, w)-intersections as choices of D, so |[n]k,s ×(t,w) [n]k,s| ≥ 2(1/2−o(1))n.

Next we show that sets in [n]k,s involved in any (t, w)-intersection are very restricted. Let
A,B ∈ [n]k,s with (|A|,

∑
(A)) = (|B|,

∑
(B)) = (α1n, α2

(
n
2

)
) = (n/2, 7

16

(
n
2

)
). Suppose A and B are

(t, w)-intersecting. Let ` := |A ∩B ∩ [n/4]|. Then( 1

16
+ ζ
)(n

2

)
= w =

∑
i∈A∩B

i =
∑

i∈A∩B:
i<n/4

i+
∑

i∈A∩B:
i≥n/4

i ≥
(
`+ 1

2

)
+
(n

4
− `
)n

4
.

Rearranging gives (` − n/4)2 − ζn2 + (1/16 + ζ)n + ` ≤ 0, so ` ≥ n/4 −
√
ζn. In particular,

|A ∩ [n/4]| ≥ n/4−
√
ζn.

We now show that almost all elements of [n]k,s do not have this restricted form. Fix constants
δ2 � δ1 � κ � 1. Let µp be the maximum entropy measure with

∑
pi(1, i) = (k, s). Then

µp is κ-bounded by Lemma 1.21. Let E := {A ⊂ [n] :
∣∣A ∩ [n4 ]

∣∣ ≥ (
1 − κ

2

)
n
4 }. Then µp(E) ≤

(1 − δ1)n by Chernoff’s inequality, so
∣∣[n]k,s ∩ E

∣∣ ≤ (1 − δ2)n|[n]k,s| by Theorem 1.20. Choosing
ζ < (κ/2)2, all (t, w)-intersecting pairs from [n]k,s lie within E , which illustrates case ii of Theorem
1.11. Furthermore, [n]k,s \ E is a set of size (1− o(1))|[n]k,s| containing no (t, w)-intersections, which
illustrates case iii of Theorem 1.11.

Counterexample 2: This counterexample is a modification of the family in Section 1.4, related to
VC-dimension. Let α1 = α2 = 2/3 and β1 = β2 = 1/3 + ζ, where ζ > 0 is small. Let n, k, s, t and w
be as in Conjecture 1.2. It is not hard to see that |[n]k,s×(t,w) [n]k,s| = (1−oζ(1))n

(
n

t,k−t,k−t,n−2k+t

)
=

(1−oζ(1))n3n and almost all elements of [n]k,s are involved in a (t, w)-intersection. However, for any
set U ⊂ [n] with |U | = 2ζn+ 1, taking AU = {A ∈ [n]k,s : A ∩ U = ∅}, we have |A ∩ B| ≥ t+ 1 for
all A,B ∈ AU and so AU ×(t,w) AU = ∅. On the other hand, if we select such a set U uniformly at
random we find EU (|AU |) ≥ (1− oζ(1))n|[n]k,s|. Thus for some U we have |AU | ≥ (1− oζ(1))n|[n]k,s|
and AU ×(t,w) AU = ∅.
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6 The general setting

In this section we state our most general result, Theorem 6.3; we will defer the proof to section
8. This is in fact the main result of the paper in some sense, as we will show in this section that
it implies Theorem 1.17 (in a more general cross-intersection form). However, the hypothesis of
‘transfers’ in Theorem 6.3 appears to be quite strong at first sight, and it will take some work to
show that it follows from the hypotheses of Theorem 1.17 (it is here that the idea of enlarging the
alphabet comes into play). We state our result in the next subsection and then deduce Theorem 1.17
in the following subsection. A second application of Theorem 6.3 is given in subsection 6.3, where
we use it to give a short proof of a theorem of Frankl and Rödl on forbidden intersection patterns.

6.1 Statement of the general theorem

Before stating our theorem, we require the following definition, which describes a situation when for
any vector u in some specific set (which will be given by the following definition), there are many
ways of choosing a coordinate and two particular alterations of its value: one does not change the
associated vector, and the other changes it by u.

Definition 6.1. Suppose V = (vij,`) is an (n, J × L)-array in ZD. We say that u is an i-transfer in

V (via (j, j′) and (`, `′)) if there are j, j′ in J and `, `′ in L with vij,` − vij′,` = u and vij′,`′ = vij,`′ .

Let U = {u1, . . . ,uM} ⊂ ZD and P = (Pm : m ∈ [M ]) for some disjoint subsets Pm of [n]. We
say that V has transfers for (P, U) if um is an i-transfer in V for each m ∈M and i ∈ Pm.

We say that V has γ-robust transfers for U if it has transfers for (P, U) for some P such that
|Pm| ≥ γn for all m ∈ [M ].

Remark 6.2. We note that an (n,
∏
s∈S Js)-array in ZD has transfers for (P, U) if it has them as

an (n, J × L)-array, where J =
∏
s∈S′ Js and L =

∏
s∈S\S′ Js for some S′ ⊂ S.

We can now state our general theorem. (Recall that U exists by Lemma 3.4.)

Theorem 6.3. Let 0 < n−1 � δ � ζ � ε, κ, γ � D−1,M−1, k−1, C−1. Let S and (Js : s ∈ S) be
sets of size at most C, and R = (R1, . . . , RD) with maxdRd < nC . Suppose

i. µq is a κ-bounded product measure on (
∏
s∈S Js)

n with marginals (µps : s ∈ S),
ii. V = (vij1,...,jS ) is an R-bounded (n,

∏
s∈S Js)-array in ZD,

iii. U = {u1, . . . ,uM} ⊂ ZD is R-bounded and (k, kζn,R)-generating,
iv. V has γ-robust transfers for U ,
v. w ∈ ZD with ‖w − V(µq)‖R < ζn.

Suppose As ⊂ Jns for s ∈ S with
∏
s∈S µps(As) > (1− δ)n. Then µq((

∏
s∈S As)Vw) > (1− ε)n.

6.2 Proof of Theorem 1.17

Now we assume Theorem 6.3 and prove Theorem 1.17; in fact we prove the more general cross-
intersection theorem. The strategy is to fuse together suitable co-ordinates and enlarge the alphabet.

Theorem 6.4. Let 0 < n−1, δ � ζ � κ, γ, ε � D−1, C−1, k−1 and R = (R1, . . . , RD) with
maxdRd < nC . Suppose

i. µq is a κ-bounded product measure on ({0, 1} × {0, 1})n with marginals (µp1 , µp2),
ii. V = (vi : i ∈ [n]) is R-bounded and γ-robustly (R, k)-generating in ZD,
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iii. w ∈ ZD with ‖w − V∩(µq)‖R < ζn.

Then any A1,A2 ⊂ {0, 1}n with µp1(A1)µp2(A2) > (1− δ)n satisfy µq((A1 ×A2)V∩w ) > (1− ε)n.

Proof. By Lemma 3.4 we can fix some (1, ζn,R)-generating R-bounded U = {u1, . . . ,uM} ⊂
ZD with M ≤ D(C + 2). By repeatedly applying Definition 1.9, we can choose pairwise disjoint
Smj , S

′
mj ⊂ [n] for each m ∈ [M ] and j ∈ [γn/kM ] with each |Smj | + |S′mj | ≤ k and um =∑

i∈Smj vi −
∑

i∈S′mj
vi. We let N = bn/kc and partition [n] into sets T1, . . . , TN each of size k and

a remainder set R with 0 ≤ |R| ≤ k − 1, such that each Smj ∪ S′mj is contained in some Ti. We let
P = (Pm : m ∈ [M ]), where each Pm is the set of i ∈ [N ] such that Ti contains some Smj ∪ S′mj .

We start by reducing to the case R = ∅ and k|n. For Rs ⊂ R we let ARss = {A ∈ As : A∩R = Rs}
for s = 1, 2. By the pigeonhole principle we can fix (R1, R2) so that µp1(AR1

1 )µp2(AR2
2 ) > 2−2K(1−

δ)n > (1−2δ)n. Let A′s = {As \Rs : A ∈ ARss } and V ′ = (vi : i ∈ [n]\R′). Note that for As ∈ A′s we
have As ∪Rs ∈ As with V∩(A1 ∪R1, A2 ∪R2) = V ′∩(A1, A2) + v′, where v′ =

∑
i∈R1∩R2

vi. Writing

w′ = w − v′, we have µq((A1 ×A2)V∩w ) > κkµq((A′1 ×A′2)
V ′∩
w′ ), so to prove the theorem it suffices to

show µq((A′1 ×A′2)
V ′∩
w′ ) > (1− ε/2)n.

We can naturally identify {0, 1}n with ({0, 1}k)N , where A ∈ {0, 1}n corresponds to (A ∩ Ti :
i ∈ [N ]) according to some fixed bijection of Ti with [k]. We will apply Theorem 6.3 with N in
place of n, with S = {1, 2} and J1 = J2 = {0, 1}k, and A′s (naturally identified) in place of As.
We let W = (wi

J1,J2
) be the (N, {0, 1}k × {0, 1}k)-array in ZD defined by wi

J1,J2
=
∑

j∈J1∩J2 vj for
J1, J2 ⊂ Ti. Note that V∩(x,y) =W(x,y) for all x,y in {0, 1}n (naturally identified).

We also note that W has transfers for (U ,P). To see this, consider i ∈ Pm with Smj ∪ S′mj ⊂ Ti.
Let J = Smj , J

′ = S′mj , L = Smj ∪ S′mj and L′ = ∅. Then wi
J,L′ = wi

J ′,L′ = 0 and wi
J,L −wi

J ′,L =∑
i∈S vi −

∑
i∈S′ vi = um.

We let µq′ be the corresponding product measure on ({0, 1}k × {0, 1}k)N , defined by q′ij1,j2 =∏
i′∈Ti q

i′

j1
i′ ,j

2
i′

for j1 and j2 in {0, 1}k, noting that µq′ is κk-bounded, and let (µp′1 , µp′2) be its marginals

on ({0, 1}k)N . By construction we have µp′s(x) = µps(x) and µq′(x,y) = µq(x,y) for all x,y in
{0, 1}n (naturally identified).

To summarise, after the above reductions, we have µp′1(A′1)µp′2(A′2) > (1−2δ)n, and it suffices to

show µq′((A′1×A′2)Ww′) > (1−ε/2)n. For r ∼ µq′ we have ‖w′−EW(r′)‖R ≤ ‖w−EV∩(r)‖R+2|R| <
2ζn, so the theorem follows from Theorem 6.3. �

6.3 Application to a theorem of Frankl and Rödl

In this subsection we give another application of Theorem 6.3, which illustrates an additional flexi-
bility, namely that our method allows different vectors defining the sizes of intersections from those
defining the sizes of sets in the family. We will give a new proof of a theorem of Frankl and Rödl [11,
Theorem 1.15] on intersection patterns in sequence spaces. (To align with notation from the rest of
the paper, our notation differs from that of [11].)

Given non-negative integers l1, . . . , ls with
∑

i li = n, let
( [n]
l1,...,ls

)
denote the set of elements x ∈

[s]n with |{i ∈ [n] : xi = j}| = lj for all j ∈ [s]. Given x ∈
( [n]
l1,...,ls

)
and y ∈

( [n]
k1,...,kt

)
, the intersection

pattern of x and y is given by an s times t matrix M , with Mj1,j2 = |{i ∈ [n] : xi = j1, yi = j2}|
for (j1, j2) ∈ [s]× [t]. For A1 ⊂

( [n]
l1,...,ls

)
and A2 ⊂

( [n]
k1,...,kt

)
we let A1 ×M A2 denote the set of pairs

(x,y) ∈ A1 ×A2 with intersection pattern M .

We say that M is an intersection pattern for (l1, . . . , ls) and (k1, . . . , kt) if each
∑

j2∈[t]Mj1,j2 =
kj1 , each

∑
j1∈[s]Mj1,j2 = lj2 , and

∑
(j1,j2)∈[s]×[t]Mj1,j2 = n. The following result of Frankl and Rödl
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is the analogue of Theorem 1.1 for intersection patterns.

Theorem 6.5 (Frankl-Rödl). Given ε, κ > 0 and s, t ∈ N there is δ > 0 such that the following
holds. Suppose that M is an intersection pattern for (l1, . . . , ls) and (k1, . . . , kt) with all Mj1,j2 ≥ κn.

Let A1 ⊂
( [n]
l1,...,ls

)
with |A1| ≥ (1− δ)n

(
n

l1,...,ls

)
and A2 ⊂

( [n]
k1,...,kt

)
with |A2| ≥ (1− δ)n

(
n

k1,...,kt

)
. Then

|A1 ×M A2| ≥ (1− ε)n|
(

n
l1,...,ls

)
×M

(
n

k1,...,kt

)
|.

Proof. Fix 0 < δ � δ′ � ε′ � ε, κ, and let J1 = [s]. Let e1, . . . , es denote the standard basis for Zs,
and let V1 = (vij) denote the (n, J1)-array, where each vij = ej . We can naturally identify

( [n]
l1,...,ls

)
with (Jn1 )V1z1 , where z1 = (l1, . . . , ls) ∈ Zs. The maximum entropy measure µp1 = µV1z1 on Jn1 is then
given by (p1)ij = lj/n for all i ∈ [n] and j ∈ J1. Indeed, as vij is independent of i ∈ [n], by strict

concavity of entropy (Lemma 2.5) so is (p1)ij = p1,j , and n(p1,1, . . . , p1,s) = EV1(x) = (l1, . . . , ls). As
µp1 is κ-bounded we can apply Theorem 1.20 to find µp1 ≈41 ν1, where ν1 is uniform measure on

(Jn1 )V1z1 =
( [n]
l1,...,ls

)
. Similarly, taking J2 = [t], we have a κ-bounded product measure µp2 on Jn2 , with

µp2 ≈42 ν2, where ν2 is uniform measure on
( [n]
k1,...,kt

)
. Therefore µpi(Ai) ≥ (1− δ′)n for i = 1, 2.

Similarly, we let e1,1, . . . , es−1,t−1 denote the standard basis for Z(s−1)(t−1), and let V = (vij1,j2)

denote the (n, J1 × J2)-array, where vij1,j2 = ej1,j2 if (j1, j2) ∈ [s− 1]× [t− 1] and 0 otherwise. We

also let w =
∑

(j1,j2)∈[s−1]×[t−1]Mj1,j2ej1,j2 . Note that for x ∈
(

n
l1,...,ls

)
and y ∈

(
n

k1,...,kt

)
, we have

V(x,y) = w if and only if x and y have intersection pattern M . Therefore (A1×A2)Vw = A1×M A2.

We will apply Theorem 6.3 to estimate (A1×A2)Vw under the product measure µq on (J1× J2)n

defined by qij1,j2 = Mj1,j2/n. By hypothesis, µq is κ-bounded, with marginals µp1 and µp2 , and

E(x,y)∼µqV(x,y) = w. Taking R to be the constant 1 vector in Z(s−1)(t−1) we see that V is R-
bounded, and U = {ej1,j2} is (st, 0,R)-generating. Lastly, V has 1-robust transfers for U , as for any
(j1, j2) ∈ [s− 1]× [t− 1] we have vij1,j2 − vis,j2 = ej1,j2 and vij1,t − vis,t = 0. As µpi(Ai) ≥ (1− δ′)n

for i = 1, 2, Theorem 6.3 gives µq((A1 ×A2)Vw) = µq(A1 ×M A2) ≥ (1 − ε′)n. The theorem follows
from a final application of Theorem 1.20. �

We wish to emphasize two aspects of the above proof. Firstly, it is crucial that the arrays V1,V2

and V can differ. Secondly, the arrays Vi are not |Ji|−1-robustly (γ,R)-generic for any γ > 0 for
i = 1, 2, so we cannot apply Lemma 4.8, but we were able to see directly that µp1 and µp2 are
κ-bounded. Thus Theorem 6.3 has useful consequences even for arrays that are not robustly generic.

7 Correlation on product sets

In this section we will prove the following correlation inequality which will be used in the proof of
Theorem 6.3; it can also be interpreted as an exponential contiguity result for product measures (see
Theorem 7.2).

Theorem 7.1. Let 0 < n−1, δ � κ, ε < 1 and µq be a κ-bounded product measure on (
∏
s∈S Js)

n

with marginals (µps : s ∈ S). Suppose As ⊂ Jns for s ∈ S with
∏
s∈S µps(As) > (1 − δ)n. Then

µq(
∏
s∈S As) > (1− ε)n.

Proof of Theorem 7.1. We first consider the case S = {1, 2}. Define f : (J1)n → R by

f(x1) = loge
(
µp1(x1)

)
− loge

(
µq({x1} × A2)

)
.
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As µp1 is a marginal of µq, we have µp1(x1) ≥ µq({x1} × A2) for all x1 ∈ (J1)n, and so f(x1) ≥ 0
for all x1 ∈ (J1)n. Note also that f is 2 log(κ−1)-Lipschitz, as µq is κ-bounded.

Let M = Eµq(f). We claim that M ≤ (2δ + α)n ≤ 2αn. To see this, we apply a well-known
concentration argument. For I ⊂ R, let

BI = {x1 ∈ (J1)n : f(x1) ∈ I}.

By Lemma 2.3, letting α = 4δ1/2 log κ−1, we have µp1(B[M−αn,M+αn]) ≥ 1 − 2e−α
2n/(8 log2(κ−1)) >

1− (1− δ)n/2. Now let

C = {x1 : µq({x1} × A2) ≥ (1− δ)nµp1(x1)/2}.

Then f(x1) ≤ 2δn for x1 ∈ C, so C ⊂ B[0,2δn]. However, (1 − δ)n ≤ µp2(A2) = µq((J1)n × A2) ≤
µp1(Cc)(1−δ)n/2+µp1(C), and so µp1(B[0,2δn]) ≥ µp1(C) ≥ (1−δ)n/2. Thus B[0,2δn]∩B[M−αn,M+αn] 6=
∅, which gives M ≤ (2δ + α)n ≤ 2αn, as claimed.

Now set B = A1 ∩ B[0,3αn]. As µp1(A1) ≥ (1 − δ)n and µp1(B[0,3αn]) ≥ µp1(B[M−αn,M+αn]) ≥
1− (1− δ)n/2 we have µp1(B) ≥ (1− δ)n/2. Therefore

µq(A1 ×A2) ≥
∑
x1∈B

µq({x1} × A2) =
∑
x1∈B

µp1(x1)e−f(x1) ≥ µp1(B)e−3αn ≥ (1− ε)n.

This completes the proof in this case.

Now we deduce the general case by induction on |S|. Suppose the theorem is known for |S| = k−1
and we wish to prove it for |S| = k. Fix s ∈ S and let S′ = S \ {s}. We view (

∏
s∈S Js)

n as
(Js × J ′)n, where J ′ =

∏
s′∈S′ Js′ . Let µp′ be the product measure on J ′n defined by µpS′ (x

′) =
µq((J1)n × {x′}). Then µp′ is κ-bounded and has marginals (µps′ )s′∈S′ , so by induction hypothesis,
as
∏
s′∈S′ µps′ (As′) ≥ (1− δ)n we have µpS′ (

∏
s′∈S′ As′) ≥ (1− δ′)n, where δ � δ′ � ε.

Also, we can view µq as a product measure on (Js × J ′)n, with marginals µps and µp′ . Since
µps(As)µp′(

∏
s′∈S′ As′) ≥ (1 − δ)n(1 − δ′)n ≥ (1 − 2δ′)n, from the |S| = 2 case of the theorem we

obtain µq(
∏
s∈S As) ≥ (1− ε)n, as required. �

Theorem 1.16 is easily deduced from Theorem 7.1.

Proof of Theorem 1.16. Given ζ > 0, taking D = {r : ‖V(r) − EV‖R ≥ ζn} ⊂ ({0, 1} × {0, 1})n,
by Lemma 2.2 we have µq

(
D
)
≤ 2De−ζ

2n/8 ≤ e−ζ
2n/16. However, provided δ, n−1 � ζ, ε, κ, by

Theorem 7.1 any A ⊂ {0, 1}n with µp(A) ≥ (1− δ)n satisfies µq(A×A) ≥ e−ζ2n/16 + (1− ε)n. Since
(A×A) ∩ Dc = (A×A)V∩L the result follows. �

To conclude this section we give a second application of Theorem 7.1 which will be useful
in Section 12; Theorem 7.1 shows the exponential contiguity of µq and

∏
s∈S µps , defined by

(
∏
s∈S µps)(xs : s ∈ S) =

∏
s∈S µps(xs). Here the subscript Π indicates exponential contiguity rela-

tive to product sets, i.e. we apply Definition 1.19 in the case Ωn =
(∏

s∈S Js
)n

and F = Π = (Πn)n∈N,
where Πn = {(An,s : s ∈ S) : all An,s ∈ Jns }.

Theorem 7.2. Let 0 < n−1 � κ � 1 and µq be a κ-bounded product measure on (
∏
s∈S Js)

n with
marginals (µps : s ∈ S). Then µq ≈Π

∏
s∈S µps.
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Proof. As in the proof of Theorem 7.1, it suffices to consider the case S = [2]. By Theorem 7.1 we
have µp1 × µp2 .Π µq. Conversely, consider As ⊂ Jns for s ∈ [2]. By the Cauchy-Schwarz inequality,
writing

∑
for
∑

x1∈Jn1 ,x2∈Jn2
, we have

µq(A1 ×A2)2 =
(∑

µq(x1,x2)
∏
s∈[2]

1xs∈As

)2
≤
∏
s∈[2]

∑
µq(x1,x2)1xs∈As =

∏
s∈[2]

µps(As),

so µq .Π µp1 × µp2 . �

8 Proof of the general theorem

In this section we prove Theorem 6.3. We start by reducing to the case |S| = 2.

Lemma 8.1. Theorem 6.3 follows from the case |S| = 2.

Proof. First note that if V has γ-robust transfers for U then it has them as an (n,L1 × L2)-array,
where each Lj =

∏
s∈Sj Js for some partition (S1, S2) of S.

Now let µpS1 denote the product measure on Ln1 defined by µpS1 (x1) = µq({x1}×Ln2 ); then µpS1
is κ-bounded. Similarly, we obtain µpS2 on Ln2 that is κ-bounded.

Let ASj =
∏
s∈Sj As for j = 1, 2. As

∏
s∈Sj µps(As) ≥ (1− δ)n and δ � δ′, by Theorem 7.1 each

µpSj (ASj ) ≥ (1− δ′)n, so the case S = {1, 2} of Theorem 6.3 applies to (AS1 ,AS2). �

Now we will prove a succession of special cases of Theorem 6.3, where the proof of each case
builds on the previous cases, culminating in the proof of the general case. The last of these, Lemma
8.4, shows that Theorem 6.3 holds assuming |S| = 2, J1 = J2 = {0, 1}, and qij1,j2 = 1/4 for all i ∈ [n]
and j1, j2 ∈ {0, 1}; we refer to these assumptions as the uniform binary setting.

Lemma 8.2. Suppose the assumptions of Theorem 6.3 hold in the uniform binary setting and V has
transfers for (P, U), where P = (Pm : m ∈ [M ]) is a partition of [n]. Then (A×A)Vw 6= ∅.

Proof. The idea of the proof is to reduce the required statement to finding two sets A and B in A
with prescribed values of |A∩B ∩Pm| for all m ∈ [M ], where we identify {0, 1}n with subsets of [n];
this will be achieved by the Frankl-Rödl theorem and Dependent Random Choice.

We start by noting that, as um is an i-transfer for each i ∈ Pm, we can assume that vi1,0−vi0,0 = um
and vi1,1 = vi0,1; indeed, this can be achieved by relabelling elements of J1 = J2 = {0, 1} for each i,
which preserves our hypotheses (as we are in the uniform binary setting).

Next we introduce some notation. We denote the marginals of µq by µp = µp1 = µp2 , i.e. we
have pi0 = pi1 = 1

2 for all i ∈ [n]. For K = (Km : m ∈ [M ]) we let BK denote the set of all a ∈ {0, 1}n
such that

∑
i∈Pm ai = Km for all m ∈ [M ].

We claim that we can fix K with Km = (1
2 ±

κ
4 )|Pm| for all m ∈ [M ] such that µp(A ∩ BK) >

(1−δ)n. Indeed, by assumption we have µp(A) > (1−δ)n/2. Also, for a ∼ µp and Xm =
∑

i∈Pm ai we

have EXm = 1
2 |Pm|, so by Chernoff’s inequality P(|Xm − EXm| > κ|Pm|/4) ≤ 2e−(κ|Pm|/4)2/2|Pm| ≤

2e−κ
2γn/32. There are at most nM choices of K, so by a union bound and the pigeonhole principle

there is some K with all Km = (1
2±

κ
4 )|Pm| such that µp(A∩BK) > n−M ((1−δ)n/2−2Me−κ

2γn/32) >
(1− δ)n, as claimed.

Now for z = (zm : m ∈ [M ]) with all zm ∈ ZD we let BK,z denote the set of all a ∈ BK
with

∑
i∈Pm viai,ai = zm for all m ∈ [M ]. As all ‖vij0,j1‖R ≤ 1 and maxdRd < nC , there are
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at most (2nC+1)DM possible values of z, and so by the pigeonhole principle there is z so that
µp(A ∩ BK,z) ≥ (1− δ)n/(2nC+1)DM > (1− 2δ)n.

We now note for any a and a′ in BK,z that V(a,a′) is determined by the values tm =
∑

i∈Pm aia
′
i.

Indeed, as vi1,0 − vi0,0 = um and vi1,1 = vi0,1 we find that

V(a,a′) =
∑
m∈[M ]

∑
i∈Pm

viai,a′i
=
∑
m∈[M ]

( ∑
i∈Pm:a′i=0

viai,a′i
+

∑
i∈Pm:a′i=1

viai,a′i

)
=
∑
m∈[M ]

( ∑
i∈Pm:a′i=0

(via′i,a′i
+ 1ai=1um) +

∑
i∈Pm:a′i=1

via′i,a′i

)
=
∑
m∈[M ]

(zm + (Km − tm)um).

Next we claim that there are b,b′ ∈ BK,z such that v∗ = V(b,b′) and ṽ = EV(r) satisfy
‖v∗−ṽ‖R < ζn, and v∗ =

∑
m∈[M ](zm+cmum), where cm ∈ Z with cm = (1

4±
κ
2 )|Pm| for all m ∈ [M ].

Indeed, selecting r = (b,b′) ∼ µq and setting X = V(r) we have P(‖X − EX‖R ≥ ζn) ≤ 2De−ζ
2n/2

by Lemma 2.2. Also, Ym =
∑

i∈Pm bib
′
i satisfies EYm = 1

4 |Pm| and P(|Ym − EYm| > κ|Pm|/4) <

2e−κ
2γn/128 by Chernoff’s inequality. As µp(BK,z) ≥ µp(A ∩ BK,z) > (1− 2δ)n, by Theorem 7.1 we

have µq(BK,z × BK,z) > (1− δ′)n, where δ � δ′ � ζ, so we can choose b and b′ as claimed.

Now we can determine values tm for m ∈ [M ] such that for any a and a′ in A ∩ BK,z with∑
i∈Pm aia

′
i = tm for all m ∈ [M ] we have V(a,a′) = w. Indeed, ‖w−v∗‖R ≤ ‖w−ṽ‖R+‖v∗−ṽ‖R <

2ζn, so as U is (k, kζn,R)-generating, we have w − v∗ =
∑

m∈[M ] emum, with each em ∈ Z and
|em| ≤ 3kζn. Thus w =

∑
m∈[M ](zm + (cm + em)um), so we take tm = Km − (cm + em) for all

m ∈ [M ]. Note that our above bounds give tm = (1
4 ± κ)|Pm| ± 3kζn.

It remains to show that we can find such a and a′. We consider the graph G = G1 × · · · × GM
on BK , where each Gm is the graph on

(
Pm
Km

)
with AmA

′
m ∈ E(Gm) ⇔ |Am ∩ A′m| = tm. Recalling

that Km = (1
2 ±

κ
4 )|Pm| we have

max(2Km − |Pm|, 0) + κ|Pm| ≤ tm =
(
1/4± κ

)
|Pm| ± 3kζn ≤ Km − κ|Pm|,

and so α(Gm) < (1 − δ′)n|V (Gm)| by Theorem 1.1. As |V (Gm)| ≥
( γn
κγn/2

)
≥ |V (Gm′)|γκ for all

m′ ∈ [M ], by Lemma 2.11 we have α(G) < (1 − 2δ)n|V (G)|. But |A ∩ BK,z|/|BK | = µp(A ∩
BK,z)/µp(BK) > (1− 2δ)n, so A ∩ BK,z contains an edge of G, as required. �

Lemma 8.3. Theorem 6.3 holds in the uniform binary setting when A1 = A2 = A.

Proof. Let P = (Pm : m ∈ [M ]) with |Pm| = γ0n for all m ∈ [M ] be such that V has transfers
for (P, U), where ζ � γ0 � ε. Let B2 = ∪m∈[M ]Pm and B1 = [n] \ B2. Write FK1,K2 for the set
of all a ∈ {0, 1}n such that

∑
i∈Bj ai = Kj for j = 1, 2. As in the proof of Lemma 8.2, we write

µp = µp1 = µp2 , note that pi0 = pi1 = 1/2, and fix Kj = (1/2 ± κ/4)|Bj | for j = 1, 2 such that
µp(A ∩ FK1,K2) > (1− δ)n.

Consider the bipartite graph G with parts (
(
B1

K1

)
,
(
B2

K2

)
) where (b1,b2) ∈ E(G)⇔ b1b2 ∈ A. By

Lemma 2.9 there is B ⊂
(
B1

K1

)
with |B| > (1− δ′)n

∣∣∣(B1

K1

)∣∣∣, where δ � δ′ � ζ, such that for any b1,b
′
1

in B we have |NG(b1,b
′
1)| > (1− δ′)n

∣∣∣(B2

K2

)∣∣∣.
We will now find F ⊂ B × B with µq(F) > (1 − ε/2)n (also writing µq for its restriction to

({0, 1} × {0, 1})B1) such that for any (b1,b
′
1) ∈ F there are b2 and b′2 in NG(b1,b

′
1), such that

V(b1b2,b
′
1b
′
2) = w. This will suffice to prove the lemma, as then µq((A×A)Vw) ≥ (1/4)|B2|µq(F) >

(1− ε)n, using γ0 � ε.
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Let Vj = {vij1,j2 : i ∈ Bj} for j = 1, 2 and ṽj = EVj(r), where r ∼ µq, so ṽ1 + ṽ2 = ṽ = EV(r).

Let E be the set of (b1,b
′
1) ∈ ({0, 1} × {0, 1})B1 such that ‖V1(b1,b

′
1)− ṽ1‖R > ζn. Then µq(E) <

2De−ζ
2n/2 by Lemma 2.2. We choose F = (B×B)\E . By Theorem 7.1 we have µq(B×B) > (1−δ′′)|B1|

with δ′ � δ′′ � ζ � ε, so µq(F) > (1− ε/2)n.

It remains to show for fixed (b1,b
′
1) ∈ F that there is b2 and b′2 in NG(b1,b

′
1) such that

V2(b2,b
′
2) = w′ := w − V1(b1,b

′
1). To see this, it suffices to verify the hypotheses of Lemma 8.2,

applied with NG(b1,b
′
1) in place of A, restricting µq to ({0, 1} × {0, 1})B2 , and with V2 in place of

V. We note that V2 has transfers for the same (P, U), and P = (Pm : m ∈ [M ]) is a partition of B2.
As ‖w′− ṽ2‖R ≤ ‖w− ṽ‖R +‖V1(b1,b

′
1)− ṽ1‖R ≤ 2ζn, replacing ζ by 2ζ we see that all hypotheses

hold, so the proof of the lemma is complete. �

Lemma 8.4. Theorem 6.3 holds in the uniform binary setting.

Proof. Let A′1 be the set of a1 ∈ A1 such that there is some a2 = a2(a1) ∈ A2 with Hamming
distance d(a1,a2) ≤ 2δ′n, where δ � δ′ � ζ. We claim that µp1(A′1) > (1− 2δ)n. This follows from
the same concentration argument used in the proof of Theorem 7.1. Indeed, consider r1 ∼ µp1 and
X = d(r1,A2) = mina2∈A2 d(r1,a2). As X is 1-Lipschitz, by Lemma 2.3 we have P(|X − EX| >
δ′n) < e−(δ′n)2/2n. This implies EX ≤ δ′n, as otherwise since X(r) = 0 for all r ∈ A2 we have
P(|X − EX| > δ′n) ≥ P(X = 0) = µp1(A2) = µp2(A2) > (1 − δ)n � e−(δ′n)2/2n, a contradiction.

Therefore P(X > 2δ′n) < e−(δ′n)2/2n, so the claim holds.

By the pigeonhole principle, we can fix T ⊂ [n] with |T | ≤ 2δ′n, a partition T = T0,1 ∪ T1,0

and A′′1 ⊂ A′1 with µp1(A′′1) > (1 − 3δ)n such that for every a1 ∈ A′′1 we have T1,0 = {i ∈ [n] :
(a1i, a2(a1)i) = (1, 0)} and T0,1 = {i ∈ [n] : (a1i, a2(a1)i) = (0, 1)}.

Now let w′ =
∑

i∈T0,1(vi0,1 − vi0,0) +
∑

i∈T1,0(vi1,0 − vi1,1) and note that for any a1 and a′1 in

A′′1 with V(a1,a
′
1) = w + w′ we have V(a1,a2(a′1)) = w. Note also that ‖w′‖R ≤ |T | ≤ 2δ′n, so

‖w + w′−EV(r)‖ ≤ ‖w′‖+ ‖w−EV(r)‖ < 2ζn. Then µq((A′′1 ×A′′1)Vw+w′) > (1− ε/2)n by Lemma

8.3, so µq((A1 ×A2)Vw) ≥ (1/4)|T |µq((A′′1 ×A′′1)Vw+w′) > (1− ε)n, as required. �

Proof of Theorem 6.3. As noted earlier, we may assume S = {1, 2}. By relabelling, we can also
assume {0, 1} ⊂ J1, J2. As V has γ-robust transfers for U , there are disjoint subsets Pm of [n], with
|Pm| ≥ γn, so that um is an i-transfer for all i ∈ Pm. By relabelling, we can assume vi1,1−vi0,1 = um
and vi1,0 = vi0,0 for all i ∈ Pm.

Next we describe an alternative method to select elements from (
∏
s∈S Js)

n according to µq. To
begin, we select a random partition [n] = S ∪ T , where each i ∈ [n] appears in S independently
with probability κ. Secondly, we randomly select r′ = (r′1, r

′
2) ∈ (J1)T × (J2)T = (J1 × J2)T

according to a product measure µq′ on (J1 × J2)T , where q′ will be defined below. Lastly, we
select s = (s1, s2) ∈ {0, 1}S × {0, 1}S = ({0, 1} × {0, 1})S , according to the uniform measure ν on
({0, 1} × {0, 1})S . (We will also write ν for the uniform measure on {0, 1}S .) We obtain a random
element r = r′ ◦ s ∈ (J1 × J2)n, which defines a product measure µq′′ on (J1 × J2)n, as r1, . . . , rn are
independent. Now we select q′ above so that q′′ = q. To determine q′, note that if j, j′ ∈ {0, 1} then
(q′′)ij,j′ = κ/4 + (1− κ)(q′)ij,j′ , and otherwise (q′′)ij,j′ = (1− κ)(q′)ij,j′ . Thus we can obtain q′′ = q by

setting (q′)ij,j′ = (qij,j′ − κ/4)/(1− κ) for i ∈ [n], j, j′ ∈ {0, 1} and (q′)ij,j′ = (q)ij,j′/(1− κ) otherwise.

(Note that κ-boundedness of q ensures q′ij,j′ ∈ [0, 1].)

We will analyse this alternative construction of µq in two steps, where in the first step we fix a
pair π = (S, r′) selected above and consider the additional random choice of s = (s1, s2). For j = 1, 2
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we let

Fπj = {sj ∈ {0, 1}S : r′ ◦ sj ∈ Aj} and

Fπw = {s ∈ Fπ1 ×Fπ2 : V(r′ ◦ s) = w}.

Since q′′ = q, we have µpj (Aj) = Eπ(ν(Fπj )) for j = 1, 2 and µq((A×A)Vw) = Eπ(ν(Fπw)).

In the remainder of the proof we will show that Pπ(ν(Fπw) > (1 − ε/2)n) > (1 − δ′)n, where
δ � δ′ � ζ. This will imply the Theorem, as then µq((A1 × A2)Vw) = Eπ(ν(Fπw)) > (1 − δ′)n(1 −
ε/2)n > (1 − ε)n. To achieve this, we will show that for ‘good’ π we can apply Lemma 8.4 to
Fπ1 and Fπ2 , with uniform product measure and the array X π := (vij,j′ : i ∈ S, j, j′ ∈ {0, 1}). As
V(r) = X π(s) + Yπ(r′), we have

Fπw = (Fπ1 ×Fπ2 )X
π

w′ ,

where w′ := w − Yπ(r′) with Yπ = (vij,j′ : i ∈ T, j ∈ J1, j
′ ∈ J2).

First we define some bad events for π and show that they are unlikely. Let vπ = E[X π(s) | π]
and B1 be the event that ‖vπ − Evπ‖R > ζn. Then P(B1) ≤ 2De−ζ

2n/8 by Lemma 2.2. Similarly,
the bad event B2 that ‖Yπ(r′)− EYπ(r′)‖R > ζn has P(B2) ≤ 2De−ζ

2n/8. Note that if B1 ∪ B2 does
not hold, as ‖w − EV(r)‖R ≤ ζn, we have ‖vπ −w′‖R ≤ 3ζn.

The last bad event is that we do not have robust transfers. Let Pπ = (P πm : m ∈ [M ]), where
P πm is the set of i ∈ Pm such that um is an i-transfer in X π. Recalling that um is an i-transfer in V
via (0, 1) and (0, 1) for all i ∈ Pm, we have i ∈ P πm whenever i ∈ S, so E|P πm| ≥ κγn. By Chernoff’s
inequality, the bad event B3 that some |P πm| < κγn/2 satisfies P(B3) < 2Me−κ

2γ2n/8.

Now let G be the good event for π that ν(Fπ1 )ν(Fπ2 ) > (1−δ′)n. By Cauchy-Schwarz and Theorem
7.1 we have

Eπν(Fπ1 )ν(Fπ2 ) ≥ (Eπν(Fπ1 ×Fπ2 ))2 = µq(A1 ×A2)2 > (1− δ′/4)2n,

so (1−P(G))(1−δ′)n+P(G) ≥ (1−δ′/2)n, giving P(G) > (1−δ′/2)n/2. Thus with probability at least
(1−δ′)n the event G\∪3

i=1Bi holds, so we can apply Lemma 8.4 to obtain ν(Fπw) = ν((Fπ1 ×Fπ2 )X
π

w′ ) >
(1− ε/2)n, as required to prove the theorem. �

9 Proof of Theorem 1.11

In this section we will prove Theorem 1.11. Let X = ({0, 1}n)Vz , as in the statement of Theorem 1.11.
The proof will split naturally into two pieces according to the VC-dimension of (X × X )V∩w . The
next subsection shows that for high VC-dimension cases i or ii of Theorem 1.11 hold; the following
subsection shows that case iii holds in the case of small VC-dimension.

9.1 Large VC-dimension

Here we implement the strategy discussed in subsection 1.4: we consider the maximum entropy
measure µq̃ that represents (X ×X )V∩w , and distinguish cases i or ii from Theorem 1.11 according to
whether its marginals µp̃ are close to µp := µpVz .

We will study w-intersections between elements in X = ({0, 1}n)Vz via a new collection of vectors
defined in Z3D, motivated by the observation that for any a,a′ ∈ {0, 1}n we have a,a′ ∈ X and
V∩(a,a′) = w if and only if∑

i∈[n]

[
aia
′
i(vi,vi,vi) + ai(1− a′i)(vi,0,0) + (1− ai)a′i(0,vi,0)

]
= (z, z,w).
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With this in mind, we adopt the following notation throughout this subsection.

Definition 9.1. Let J = {0, 1} × {0, 1} and let Ṽ = (ṽij) denote the (n, J)-array in Z3D with

ṽi1,1 = (vi,vi,vi), ṽi1,0 = (vi,0,0),

ṽi0,1 = (0,vi,0), ṽi0,0 = (0,0,0) ∈ Z3D,

where 0 denotes the zero vector in ZD. Let z,w ∈ ZD and X = ({0, 1}n)Vz .

We identify (X × X )V∩w with (Jn)Ṽx̃ , where x̃ := (z, z,w). We define

µq̃ := µṼx̃ and µp := µVz .

We denote the marginals of µq̃ by µp̃ (both marginals are equal).

Next we show κ-boundedness of the above measures under our usual assumptions on V (and
justify the final statement of the above definition).

Lemma 9.2. Let 0 < n−1 � κ � γ, γ′ � λ � ε,D−1, C−1, k−1. Let R ∈ RD with maxdRd ≤ nC .
and R̃ = (R,R,R) ∈ Z3D. Suppose V = (vi : i ∈ [n]) is an R-bounded, γ′-robustly (γ,R)-generic
γ-robustly (R, k)-generating array in ZD. Then Ṽ is R̃-bounded, (γ′/2)-robustly (γ3, R̃)-generic and
(γ/2)-robustly (R̃, 3k)-generating. Suppose also that dimV C((X ×X )V∩w ) ≥ λn. Then µp and µq̃ are
κ-bounded, both marginals of µq̃ are µp̃, and µp̃ ∈MVz .

Proof. The proof of the first statement is ‘definition chasing’ so we omit it. The last statement follows
from symmetry and strict concavity of L(p) (see Lemma 2.5 ii). For κ-boundedness of µp and µq̃ we
apply Lemma 4.8. For µp this is valid as dimV C(X ) ≥ λn and V is γ-robustly (γ,R)-generic. For

µq̃ this is valid as dimV C((X × X )V∩w ) ≥ λn and Ṽ is (γ′/2)-robustly (γ3, R̃)-generic. �

Now we prove the main lemma of this subsection, which distinguishes cases i and ii according to
‖p− p̃‖1 :=

∑
i∈[n],j∈J |pij − p̃ij |.

Lemma 9.3. Let 0 < n−1 � δ � δ1 � γ, γ′ � λ � ε,D−1, C−1, k−1 and let R ∈ RD with
maxdRd ≤ nC . Suppose V = (vi : i ∈ [n]) is an R-bounded, γ′-robustly (γ,R)-generic γ-robustly
(R, k)-generating array in ZD. Fix notation as in Definition 9.1 and suppose dimV C((X ×X )V∩w ) ≥
λn.

i. Suppose ‖p−p̃‖1 ≤ δ1n. If A ⊂ X with |A| ≥ (1−δ)n|X | then |(A×A)V∩w | ≥ (1−ε)n|(X×X )V∩w |.
ii. Suppose ‖p− p̃‖1 ≥ δ1n. Then there is Bfull ⊂ X with |Bfull| ≤ (1− δ)n|X | and

|(X × X )V∩w \ (Bfull × Bfull)V∩w | ≤ (1− δ)n|(X × X )V∩w |.

Furthermore, if B ⊂ Bfull with |B| ≥ (1− δ)n|Bfull| then |(B × B)V∩w | ≥ (1− ε)n|(X × X )V∩w |.

Proof. By Lemma 9.2, µp and µq̃ (and so µp̃) are κ-bounded, where κ � γ, γ′. Then by Theorem
1.20, µp ≈4 ν, where ν is the uniform distribution on 4n = ({0, 1}n)Vz = X . Also by Theorem 1.20,

µq̃ ≈4′ ν ′, where ν ′ is the uniform distribution on 4′n = (Jn)Ṽx̃ = (X × X )V∩w .

Fix constants δ � δ0 � δ1 � δ2 � ε1 � κ.

Case i: ‖p− p̃‖1 ≤ δ1n.

Given A ⊂ X with |A| ≥ (1 − δ)n|X |, we have µp(A) ≥ (1 − δ1)n by Theorem 1.20. As both p
and p̃ are κ-bounded, and ‖p − p̃‖1 ≤ δ1n, we have µp̃(A) ≥ (1 − δ1)n(κ)δ1n ≥ (1 − δ2)n. As the
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hypotheses of Theorem 1.17 hold, we find µq̃((A × A)V∩w ) ≥ (1 − ε1)n. Theorem 1.20 applied once

again for µq̃ gives |(A×A)V∩w | ≥ (1− ε)n|(Jn)Ṽx̃ | = (1− ε)n|(X × X )V∩w |.
Case ii: ‖p− p̃‖1 ≥ δ1n.

In this case, we let

Bfull =
{
x ∈ X : − log2 µp̃(x) = H(µp̃)± δ2

1n/2
}
.

Note that H(µp̃) ≤ H(µp) − δ2
1n by Lemma 2.6, which gives |Bfull| ≤ 2H(µp)−δ21n/2 ≤ (1 − δ)n|X |,

where we use Lemma 3.5 in the second inequality.

Next we show that almost all w-intersections in X are contained in Bfull. We require an upper
bound on the size of Y := (X ×X )V∩w \ (Bfull ×Bfull)V∩w . Note that Y ⊂ (X × (X \ Bfull))V∩w ∪ ((X \
Bfull)×X )V∩w . As µp̃ is a marginal of µq̃, this gives µq̃(Y) ≤ 2µq̃((X×(X \Bfull))V∩w ) ≤ 2µp̃(X \Bfull).
However, µp̃ is κ-bounded, so Lemma 3.1 gives µq̃(Y) ≤ 2µp̃(X \ Bfull) ≤ (1 − δ0)n. As µq̃ ≈∆′ ν

′

by Theorem 1.20, this gives |Y| ≤ (1− δ)n|(X × X )V∩w |, as required.

It remains to show supersaturation relative to Bfull; the proof is similar to that of case i. As µp̃ is
κ-bounded, Lemma 3.5 gives log2 |Bfull| ≥ H(µp̃)−δ1n. Suppose B ⊂ Bfull with |B| ≥ (1−δ)n|Bfull|.
Then µp̃(B) ≥ |B|2−H(µp̃)−δ21n/2 ≥ (1− δ1)n. Theorem 6.3 gives µq̃((B × B)V∩w ) ≥ (1− ε1)n. A final
application of Theorem 1.20 gives |(B × B)V∩w | ≥ (1− ε)n|(X × X )V∩w |. �

9.2 Small VC-dimension

To complete the proof of Theorem 1.11, it remains to show the negative result in the case that
(X × X )V∩w has small VC-dimension, i.e. that there is a large subset of X with no w-intersection.

First we use universal VC-dimension (see Definition 4.3) to give a criterion for (X ×X )V∩w to have
large VC-dimension (which will be used in contrapositive form). We require the following notation.
Given x ∈ X , j ∈ {0, 1}, α > 0 let

Sj(x) = {i ∈ [n] : xi = j}, Vjx = (vi : i ∈ Sj(x)),

N1
w(x) = ({0, 1}S1(x))

V1
x

w , N0
z−w(x) = ({0, 1}S0(x))

V0
x

z−w,

Xαw = {x ∈ X : |N0
z−w(x)| ≥ (1 + α)n and |N1

w(x)| ≥ (1 + α)n}.

An important observation is(
x′ ∈ X and V∩(x,x′) = w

)
⇔
(
x′ = y0 ◦ y1 with y0 ∈ N0

z−w(x) and y1 ∈ N1
w(x)

)
.

Lemma 9.4. Let n−1 � λ � γ, γ′ � α � ε,D−1, C−1, k−1 and let R ∈ RD with maxdRd ≤ nC .
Suppose V = (vi : i ∈ [n]) where each vi ∈ ZD is R-bounded and V is γ′-robustly (γ,R)-generic and γ-
robustly (R, k)-generating. Suppose |X | ≥ (1+ε)n and |Xαw| ≥ |X |/2. Then dimV C((X×X )V∩w ) ≥ λn.

Proof. The strategy of the proof is to find a large set S that is shattered by a subset X ′ of X ,
such that if x ∈ X ′ then dimUV C(N0

z−w(x)) and dimUV C(N1
w(x)) are large. Then the definition of

universal VC-dimension will imply that S is shattered by (X ×X )V∩w , as N0
z−w(x) shatters S0(x) and

N1
w(x) shatters S1(x). First we note by Lemma 1.21 that µp is κ-bounded, where α� κ� ε.

Let X ′ be the set of x ∈ Xαw such that V1
x and V0

x are (κkγ/2k)-robustly (R, k)-generating. We
claim that |X ′| ≥ |X |/4. To see this, note that for any w ∈ ZD with ‖w‖R ≤ 1, as V is γ-robustly
(R, k)-generating, there are L ≥ γn/k disjoint sets S1, . . . , SL, with |S`| ≤ k for all ` ∈ [L], such that
for all ` ∈ [L] there is a partition S` = S1

` ∪S0
` with

∑
i∈S1

`
vi−

∑
i∈S0

`
vi = w. Given x ∈ {0, 1}n and
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j ∈ {0, 1}, let Ljw(x) = {` ∈ [L] : S` ⊂ Sj(x)}. As µp is κ-bounded, each Ex∼µp(|Ljw(x)|) ≥ κkL.
Let Bw be the event that either |L0

w(x)| ≤ κkL/2 or |L1
w(x)| ≤ κkL/2. Also let B be the union of

Bw over all w ∈ ZD with ‖w‖R ≤ 1. There are at most (2n + 1)CD choices of w, so by Chernoff’s
inequality and a union bound Px∼µp(B) = (1− cκ)n for some cκ > 0. By Theorem 1.20, we deduce
|Xαw \ B| ≥ |X |/4. As Xαw \ B ⊂ X ′ this proves the claim.

Next we claim that if x ∈ X ′ then dimUV C(N0
z−w(x)) ≥ λn in {0, 1}S0(x) and dimUV C(N1

w(x)) ≥
λn in {0, 1}S1(x). Indeed, as x ∈ Xαw we have |S1(x)|, |S0(x)| ≥ log2(1 + α)n, so V0

x and V1
x are

(γ′/ log2(1 + α))-robustly (γ,R)-generic, and by Lemma 4.7 both N0
z−w(x) and N1

w(x) have VC-
dimension at least α′n, where γ, γ′ � α′ � α. Both V0

x and V1
x are also clearly R-bounded, and

by definition of X ′ these vectors are (κkγ/2k)-robustly (R, k)-generating, so the claim follows from
Lemma 4.11.

Now we can implement the strategy outlined at the start of the proof. As |X ′| ≥ |X |/4 ≥
(1 + ε)n/4, we have dimV C(X ′) ≥ λn by Lemma 4.7. Let S ⊂ [n] with |S| ≥ λn be shattered by X ′.
We will show that S is also shattered by (X ×X )V∩w ⊂ ({0, 1}×{0, 1})n. Indeed, suppose that we are
given a partition ∪j1,j2∈{0,1}Sj1,j2 of S, and wish to find sets x,x′ ∈ X such that V∩(x,x′) = w and
{i ∈ S : xi = j1, x

′
i = j2} = Sj1,j2 . As X ′ shatters S, there is x ∈ X ′ with {i ∈ S : xi = 1} = S1,0∪S1,1.

Furthermore, using the universal VC-dimension of N1
w(x) and N0

z−w(x), we have y1 ∈ N1
w(x) with

{i ∈ S1,0 ∪ S1,1 : (y1)i = 1} = S1,1 and y0 ∈ N0
z−w(x) with {i ∈ S0,0 ∪ S0,1 : (y2)i = 1} = S0,1. Now

x′ = y0 ◦ y1 ∈ X with V∩(x,x′) = w and {i ∈ S : xi = j1, x
′
i = j2} = Sj1,j2 for all j1, j2 ∈ {0, 1}.

Thus S is shattered by (X × X )V∩w , and so dimV C((X × X )V∩w ) ≥ λn, as required. �

We conclude with the main result of this subsection, that there is a large subset of X with no
w-intersection.

Lemma 9.5. Let n−1 � λ� γ, γ′ � ε,D−1, C−1, k−1 and let R ∈ RD with maxdRd ≤ nC . Suppose
V = (vi : i ∈ [n]) where each vi ∈ ZD is R-bounded and V is γ′-robustly (γ,R)-generic and γ-robustly
(R, k)-generating. Suppose z 6= w and dimV C((X × X )V∩w ) ≤ λn. Then there is Bempty ⊂ X with
|Bempty| ≥ b(1− ε)n|X |c and (Bempty × Bempty)V∩w = ∅.

Proof. We may assume |X | ≥ (1 + ε)n as otherwise we can take Bempty = ∅. Take α and ξ such that
γ, γ′ � α � ξ � ε,D−1, C−1, k−1. Let X0 = {x ∈ X : |N0

z−w(x)| ≤ (1 + α)n} and X1 = {x ∈ X :
|N1

w(x)| ≤ (1 +α)n}. Then |X0 ∪X1| ≥ |X |/2 by Lemma 9.4. The remainder of the proof splits into
two similar cases according to which Xj is large; we will give full details for the case j = 1 and then
indicate the necessary modifications for j = 0.

Suppose |X1| ≥ |X |/4. By the pigeonhole principle, we can fix X ′ ⊂ X1 and t ∈ [n] such that
|X ′| ≥ |X |/4n and |S1(x)| = t for all x ∈ X ′. As

(
n
t

)
≥ |X ′| ≥ (1 + ε)n/4n we have ξn ≤ t ≤ n− ξn.

Next we can pass to a subset X ′′ ⊂ X ′ with |X ′′| ≥ |X ′|/2
(
n

2ξn

)
≥ (1 − ξ1/2)n|X | that is ‘well-

separated’, in that the Hamming distance d(x,x′) ≥ 2ξn for all distinct x,x′ ∈ X ′′. Indeed, we can
select X ′′ greedily, noting that each element of X ′′ forbids at most

∑
i∈[0,2ξn]

(
n
i

)
≤ 2

(
n

2ξn

)
elements

from X ′′. As |S1(x)| = |S1(x′)| = t, this gives |S1(x) \ S1(x′)| ≥ ξn for all distinct x,x′ ∈ X ′′.
Next we will define Bempty. We randomly select S ⊂ [n] with |S| = ξn, and let C = {x ∈ X ′′ :

S ⊂ S1(x)}. We say that x ∈ C is isolated if there is no x′ ∈ C with V∩(x,x′) = w. We let Bempty
be the set of isolated x ∈ C. Then by definition we have (Bempty × Bempty)V∩w = ∅.

Now we will show that E|Bempty| ≥ (1−ε)n|X |. As E(|C|) =
(
t
ξn

)(
n
ξn

)−1|X ′′|, |X ′′| ≥ (1−ξ1/2)n|X |
and ξ � ε, it suffices to show P(x is isolated | x ∈ C) ≥ 1/2 for all x ∈ X ′. To see this, we condition
on x ∈ C and note that S is equally likely to be any subset of S1(x) of size ξn. Consider any x′ ∈ X ′′
with V∩(x,x′) = w. Note that x 6= x′ since V(x,x′) = z 6= w, and so S1(x) 6= S1(x′) as both sets
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have size t. Furthermore y := x′|S1(x) ∈ N1
w(x), we have |S1(x)\S1(y)| ≥ ξn by definition of X ′′, and

x′ ∈ C ⇔ S ⊂ S1(y). For fixed y we have P(S ⊂ S1(y)) ≤
(
t−ξn
ξn

)(
t
ξn

)−1 ≤ (1− ξ)ξn. By definition of

X1 we have a union bound over at most (1 + α)n choices of y ∈ N1
w(x), so as α� ξ, the probability

that x is not isolated given x ∈ C is o(1), so at most 1/2, as required.

Similarly, if |X0| ≥ |X |/4, we define X ′ and X ′′ in the same way for X0, and let C = {x ∈ X ′′ :
S ⊂ S0(x)}. We use the same definition of Bempty as before, and bound the probability that x is not
isolated given x ∈ C by taking a union bound over at most (1+α)n choices of y := x′|S0(x) ∈ N0

z−w(x).
The remaining details of this case are the same, so we omit them. �

9.3 Proof of Theorem 1.11

Proof of Theorem 1.11. Take λ with γ1, γ
′
1 � λ � γ2, γ

′
2. If dimV C((X × X )V∩w ) ≥ λn, then we can

apply Lemma 9.3 with γ = γ1 and γ′ = γ′1 to obtain case i or ii of Theorem 1.11. On the other
hand, if dimV C((X ×X )V∩w ) ≤ λn then we apply Lemma 9.5 with γ = γ2 and γ′ = γ′2 to obtain case
iii of Theorem 1.11. �

10 Solution of Kalai’s Conjecture

In this section we prove Theorem 1.3, which is our solution to Kalai’s Conjecture 1.2. We give the
proof in the first subsection, then generalise it in the following subsection to show that supersaturation
of the type conjectured by Kalai is quite rare.

10.1 Proof of Theorem 1.3

As described in subsection 1.4, the supersaturation conclusion desired by Conjecture 1.2 (case i of
Theorem 1.11) needs the maximum entropy measure µq̃ that represents (X ×X )V∩w to have marginals

µp̃ close to µp := µpVz . Recall that in Definition 9.1 we constructed µq̃ as µṼx̃ , where Ṽ is a certain

(n, {0, 1}×{0, 1})-array in Z3D and x̃ := (z, z,w). In this subsection we work with the Kalai vectors
V = (vi)i∈[n] with vi = (1, i), so D = 2. In the notation of Conjecture 1.2 we have z = (k, s) and
w = (t, w). Sometimes we will indicate the dependence on n as a subscript in our notation, e.g.
writing zn = (kn, sn) = (bα1nc ,

⌊
α2

(
n
2

)⌋
). Our proof will use the following concrete description of

the maximum entropy measures as Boltzmann distributions.

Lemma 10.1. Let V = (vij) be an (n, J)-array in ZD and z ∈ ZD. Suppose p = pVz has all pij 6= 0.

Then there is λ ∈ (RD)J such that all pij = Z−1
i eλj ·v

i
j , where Zi =

∑
j∈J e

λj ·vij .

Proof. By the theory of Lagrange multipliers, p is a stationary point of

L(p,λ,λ′) = H(p) log 2 +
∑
d∈[D]

∑
j∈J

λj,d

(∑
i∈[n]

pij(v
i
j)d − zd

)
+
∑
i∈[n]

λ′i

(
1−

∑
j∈J

pij

)
.

Thus 0 = −1− λ′i − log(pij) +
∑

d∈[D] λj,d(v
i
j)d for each i and j, which gives the stated formula. �

When p = pVz and µq̃ = µṼx̃ are κ-bounded we can describe them explicitly using Lemma 10.1.

For p we obtain λ = (λ1, λ2) ∈ R2 such that p = pVz is given by pi1 = eλ1+λ2(i/n)(1 + eλ1+λ2(i/n))−1

(it is convenient to rescale, using λ2/n in place of λ2). To determine whether p is close to p̃, it will
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be more convenient to pass to a limit problem in which closeness is replaced by equality. With this
in mind, we write

pi1 = (p
(n)
λ )i1 := fλ(i/n), where fλ(x) = eλ1+λ2x(1 + eλ1+λ2x)−1. (4)

Similarly, Lemma 10.1 gives π = (π1, π
′
1, π2, π

′
2) ∈ R4 (using the symmetry between (0, 1) and (1, 0))

such that µq̃ = µṼx̃ is given by q̃ij,j′ = (q
(n)
π )ij,j′ := gπj,j′(i/n), where

gπ0,0(x) = Zπ(x)−1, gπ0,1(x) = gπ1,0(x) = eπ1+π2xZπ(x)−1,

gπ1,1(x) = eπ
′
1+π′2xZπ(x)−1, with Zπ(x) = 1 + 2eπ1+π2x + eπ

′
1+π′2x. (5)

The limit marginal problem is to characterise λ and π such that fλ(x) = gπ0,1(x) + gπ1,1(x).

Next we formulate the constraints on λ and π defined by the parameters α1, α2, β1, β2 of Conjec-
ture 1.2, namely

∑
i∈[n] p

i
1(1, i) = (k, s) = (α1n, α2

(
n
2

)
) and

∑
i∈[n] q̃

i
1,1(1, i) = (t, w) = (β1n, β2

(
n
2

)
).

The limit versions of these constraints are h(λ) = α = (α1, α2) and h∗(π) = β = (β1, β2), where

h(λ) =

∫ 1

0
(1, 2x)fλ(x)dx and h∗(π) =

∫ 1

0
(1, 2x)gπ1,1(x)dx. (6)

The following lemma shows that we can think of λ as a reparameterisation of α, and that large finite
instances of [n]k,s are well-approximated by the limit. Recall that a homeomorphism is a continuous
bijection with a continuous inverse.

Lemma 10.2.

i. h is a homeomorphism between R2 and Λ.

ii. For α ∈ Λ and large n we have µVnzn = µp, for some p = p
(n)

λ(n) where λ(n) → λ = h−1(α).

Proof. We start by noting that h is continuous. Next we claim that h(λ) ∈ Λ for all λ ∈ R2. To
see this, note that 0 ≤ fλ(x) ≤ 1 for all x ∈ [0, 1]. Then given α1 =

∫ 1
0 fλ(x)dx, we can bound

α2 =
∫ 1

0 2xfλ(x)dx below by
∫ 1

0 2x1[0,α1]dx = α2
1 and above by

∫ 1
0 2x1[1−α1,1]dx = 2α1 − α2

1, so
(α1, α2) ∈ Λ, as claimed.

Next we claim that the principal minors of the Jacobian of h are positive; this gives injectivity
of h by the Gale-Nikaido theorem [14], and also continuity of h−1 by the Inverse Function Theorem.
The Jacobian of h is(

I(1) 2I(x)
I(x) 2I(x2)

)
, where I(g) =

∫ 1

0
g(x)

( fλ(x)

1 + eλ1+λ2x

)
dx.

All entries are positive as fλ(x) is positive. The determinant 2(I(1)I(x2)− I(x)2) is positive by the
Cauchy-Schwarz inequality. Thus the claim holds.

It remains to prove statement (ii) of the lemma. Fix (α1, α2) ∈ Λ. We claim that |[n]kn,sn | ≥
(1 + γ)n for n−1 � γ � α1, α2. To see this, we fix γ � ζ � θ � α1, α2 and construct a θ-
bounded measure µp on {0, 1}S for some S ⊂ [n] such that

∑
i∈S pi(1, i) = (kn, sn) ± ζ(n, n2);

the claim then follows by Lemma 3.5. We let S = [a − θkn, a + kn + θkn], for some a ∈ [n]
such that

∑a+kn
i=a+1 i = sn ± n; as α2

1 < α2 < 2α1 − α2
1 we have S ⊂ [n] for small θ. Note that

α2n
2 = 2sn+O(n) = kn(a+kn/2)+O(n). We let pi = (1+2θ)−1 for i ∈ S. Then

∑
i∈S pi = kn+O(1)

and
∑

i∈S pii = sn +O(n), as required to prove the claim.
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Now by Lemma 1.21, pVnzn is κ-bounded, where n−1 � κ� γ, so Lemma 10.1 gives pVnzn = p
(n)

λ(n) .

for some λ(n). By κ-boundedness, κ/2 ≤ (pVnzn )i1/(p
Vn
zn )i0 = eλ

(n)
1 +λ

(n)
2 (i/n) ≤ 2κ−1 for all i ∈ [n], so

λ(n) ∈ [−C,C]2, where n−1 � C−1 � κ. Then (λ(n)) has a convergent subsequence by compactness
of [−C,C]2. Furthermore, any convergent subsequence of λ(n) has a limit λ that satisfies h(λ) = α,
so is uniquely determined by injectivity of h. �

Next we show a limit theorem for the maximum entropy measures for (t, w)-intersections which
is somewhat analogous that in Lemma 10.2 ii for the maximum entropy measures for [n]k,s.

Lemma 10.3. Suppose that g = (α1, α2, β1, β2) ∈ [0, 1]4 with (α1, α2) ∈ Λ. Write µq̃(n) = µṼnx̃n .
Then either

i. there is (j, j′) ∈ {0, 1}2 such that mini∈[n](q̃
(n))ij,j′ → 0, or

ii. for large n we have q̃(n) = q
(n)

π(n), where π(n) converges to some π ∈ R4.

Furthermore, the following are equivalent to case ii:

i. there is κ > 0 such that µq̃(n) is κ-bounded for large n,
ii. there is λ > 0 such that dimV C([n]k,s ×(t,w) [n]k,s) > λn for large n.

Proof. We will suppose that case (i) does not apply and show that case (ii) holds. As (i) does not
hold there is κ′ > 0 and a subsequence (nm)m such that each µq̃(nm) is κ′-bounded. By Lemma 10.1,

we have π(nm) ∈ R4 so that q̃(nm) = q
(nm)

π(nm) and by κ′-boundedness each π(nm) ∈ [−C,C]4 for some
C = C(κ′) > 0. We can pass to a convergent subsequence by compactness and so we can assume
π(nm) → π ∈ R4, relabelling if necessary.

Next we make some observations on the functions gπj,j′(x) defined in (5). We note for each

j, j′ ∈ {0, 1} that (π′, x) 7→ gπ
′

j,j′(x) defines a function on [−C,C]4 × [0, 1] that is continuous, and so

uniformly continuous. As π(nm) → π we deduce that gπ
(nm)

j,j′ converges uniformly to gπj,j′ on [0, 1],

and so (q(n))ij,j′ = (q
(n)
π )ij,j′ = gπj,j′(i/n) satisfies

max
i∈[nm]

|(q̃(nm))ij,j′ − (q(nm))ij,j′ | → 0 as m→∞. (7)

Also, as q̃
(nm)

π(nm) is κ′-bounded,

κ′ ≤
(
q̃

(nm)

π(nm)

)bxnmc
j,j′

= gπ
(nm)

j,j′ (x) + o(1)→ gπj,j′(x) as m→∞,

using continuity and π(nm) → π, so gπj,j′(x) ≥ κ′ for all x ∈ [0, 1]. We also claim that∫ 1

0
(1, 2x)gπ1,1dx = (β1, β2) and

∫ 1

0
(1, 2x)gπ1,0dx = (α1 − β1, α2 − β2) =

∫ 1

0
(1, 2x)gπ0,1dx. (8)

To see this, we use Ṽn(µq̃(n)) = x̃n = (α1n, α2

(
n
2

)
, α1n, α2

(
n
2

)
, β1n, β2

(
n
2

)
) ± 1. For example, for the

first coordinate in (8), as
∑

i(q̃
(nm))i1,1 = β1n ± 1, by (7) we have β1 + o(1) = 1

n

∑
i g

π
1,1(i/n) =∫ 1

0 g
π
1,1(x)dx+ o(1). The other coordinates are similar, so (8) holds.

Now we claim that µq̃(n) is κ-bounded with n−1 � κ� κ′. To see this, take n−1 � λ� κ so that

‖Ṽn(µq(n))− x̃n‖R̃n
≤ λn; this is possible by the calculations in the proof of (8). By Lemma 9.2 and

properties (1) and (2) of the Kalai vectors, Ṽn is (0.05)-robustly (R̃n, 21)-generating and γ/2-robustly
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(γ3/8, R̃n)-generic for any γ > 0. To prove the claim, by Theorem 4.6 (implication v =⇒ i) it suffices
to show that (Ṽn, R̃n, x̃n) is λ-feasible. To see this, consider any x′n ∈ ZD with ‖x′n−x̃n‖R̃n

≤ λn and

V ′n′ obtained from Ṽn by deleting at most λn co-ordinates. Then (Jn
′
)
V ′
n′

x′n
6= 0, by Lemma 3.5 applied

to the R̃n-bounded 0.04-robustly (R̃n, 21)-generating array V ′n′ and the (κ′-bounded) restriction µ′

of µq(n) , as ‖V ′n′(µ′)− x′n‖R̃ ≤ 2λn. This proves the claim.

Our next claim is that n−1H(µq̃(n)) converges to H∗(π). To see this, first note that as gπ
(nm)

j,j′

converges uniformly to gπj,j′ on [0, 1], as m→∞ we have

n−1
m H(µq̃(nm)) = Ei∈[nm]

∑
j,j′∈{0,1}

−gπ(nm)

j,j′ (i/nm) log2 g
π(nm)

j,j′ (i/nm)

→ H∗(π) :=
∑

j,j′∈{0,1}

−
∫ 1

0
gπj,j′(x) log2 g

π
j,j′(x)dx.

By the same calculation with π in place of π(nm) we deduce limn n
−1H(µq(n)) = limm n

−1
m H(µq(nm)) =

limm n
−1
m H(µq̃(nm)) = H∗(π). On the other hand, Lemma 3.5 gives H(µq̃(n)) ± o(n) = |(Jn)Ṽnx̃n | ≥

H(µq(n))− o(n), so lim infn n
−1H

(
µq̃(n)

)
≥ H∗(π). This estimate applies to any accumulation point

π of {π(n)}n. Considering any subsequence (nm) with n−1
m H(µq̃(nm)) → lim supn n

−1H
(
µq̃(n)

)
we

obtain lim infn n
−1H

(
µq̃(n)

)
≥ lim supn n

−1H
(
µq̃(n)

)
, so the claim holds.

Now we will prove π(n) → π, using stability of maximum entropy measures. Suppose for con-
tradiction that there are subsequences π(nm) → π and π(sm) → π′ with π 6= π′. By the previous
claim, H∗(π) = H∗(π′). Take m−1 � λ3 � λ2 � λ1 � ‖π − π′‖1 so that the non-zero continu-
ous functions gπj,j′ − gπ

′
j,j′ satisfy ‖gπj,j′ − gπ

′
j,j′‖1 ≥ λ1 for all j, j′ ∈ {0, 1}. As m is large, this gives

‖q(sm)−q̃(sm)‖1 ≥ λ1sm/2. Since n−1‖Ṽn(µq(n))−x̃n‖R̃n
→ 0 as n→∞, we also have Ṽsm(µq(sm)) =

x̃sm±λ3R̃sm . As in the proof of Lemma 4.10, we can modify q(sm) to obtain q∗ with Ṽsm(µq∗) = x̃sm ,
‖qsm −q∗‖1 < λ2sm, and (sm)−1H(µq∗) > H∗(π)−λ2/2 = H∗(π′)−λ2/2 ≥ (sm)−1H(µq̃(sm))−λ2.

But then q̃(sm),q∗ ∈MṼsmx̃sm
, which gives the required contradiction by Lemma 2.6, since µq̃(n) = µṼnx̃n

for all n, ‖q̃(sm) − q∗‖1 ≥ λ1sm/4 and H(q∗) ≥ H(q̃(sm))− λ2sm.

Lastly the first equivalence is immediate from our proof, and the second from Theorem 4.6. �

Our next lemma explains the characterisation of the set Γ that appears in Theorem 1.3: it is
the set of g = (α1, α2, β1, β2) with (α1, α2) ∈ Λ such that the limit marginal problem has a solution.
First we complete the definition of Γ by defining the functions β1, β2 : Λ → R that appear in the
definition of Γ1, using the definitions of h in (6) and fλ in (4). Suppose α ∈ Λ with α1 6= α2 and let
λ = h−1(α). We define

(β1(α1, α2), β2(α1, α2)) =

∫ 1

0
(1, 2x)fλ(x)2dx. (9)

Lemma 10.4. Suppose g = (α1, α2, β1, β2) ∈ [0, 1]4 with α = (α1, α2) ∈ Λ. Let λ = h−1(α).
Then g ∈ Γ if and only if there is π = (π1, π

′
1, π2, π

′
2) ∈ R4 with h∗(π) = (β1, β2) and fλ(x) =

gπ0,1(x) + gπ1,1(x). Furthermore, if g ∈ Γ there is a unique such π, which we denote πλ, and

log2

∣∣[n]k,s ×(t,w) [n]k,s
∣∣ = H(µq′) + o(n), where q′ = q

(n)

πλ .
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Proof. First suppose that there is π with h∗(π) = (β1, β2) and fλ(x) = gπ0,1(x) + gπ1,1(x). Then we
also have 1 − fλ(x) = gπ0,0(x) + gπ1,0(x). Setting y = ex and rearranging, we find the polynomial
equality

eπ1yπ2 + eπ
′
1yπ

′
2 = eλ1yλ2 + eλ1+π1yλ2+π2 (10)

for all y ∈ [1, e]. Thus one of the following two conditions holds:

(a) π2 = λ2 and π′2 = λ2 + π2, (b) λ2 = π′2 = 0.

Suppose that λ2 6= 0 and so case (a) holds, giving π2 = λ2 and π′2 = 2λ2. Equating coefficients
in (10) gives λ1 = π1 and π′1 = 2λ1, so π = πλ = (λ1, 2λ1, λ2, 2λ2). Then gπ1,1(x) = (eπ1+π2x)2(1 +

eπ1+π2x)−2 = fλ(x)2, so q′i1,1 = gπ1,1(i/n) = fλ(i/n)2 = ((p
(n)
λ )i1)2, i.e. µq′ is the product of its two

marginals µ
p
(n)
λ

. Note that α1 6= α2, as h is injective and h(λ1, 0) = (α1, α1). Thus g ∈ Γ1.

Now suppose that λ2 = π2 = 0. Then the right hand side of (10) is constant, so π′2 = 0,
and so eπ1 + eπ

′
1 = eλ1 + eλ1+π1 . Thus α1 = α2 = fλ(x) = eλ1(1 + eλ1)−1, and β1 = β2 =

gπ1,1(x) = eπ
′
1(1 + 2eπ1 + eπ

′
1)−1. Furthermore, β1 = gπ1,1(x) < gπ1,1(x) + gπ0,1(x) = α1 and 2α1 − 1 =

2(eπ1 + eπ
′
1)(1 + 2eπ1 + eπ

′
1)−1 − 1 < eπ

′
1(1 + 2eπ1 + eπ

′
1)−1 = β1. Thus g ∈ Γ2.

It remains to consider λ2 = 0 and π2 6= 0. Then case (b) must hold, so π′2 = 0. Equating
coefficients in (10) gives λ1 = π′1 and λ1 + π1 = π1, so λ1 = π′1 = 0. Then α1 = α2 = fλ(x) = 1/2.
We also have gπ1,1(x) = eπ1+π2x(2+2eπ1+π2x)−1 = fπ̃(x)/2, where π̃ = (π1, π2). We deduce (β1, β2) =

h∗(π) =
∫ 1

0 (1, 2x)gπ1,1(x)dx = 1
2

∫ 1
0 (1, 2x)fπ̃(x)dx = h(π̃)/2, so 2(β1, β2) ∈ Λ. Thus g ∈ Γ3.

We conclude that if h∗(π) = (β1, β2) and fλ(x) = gπ0,1(x) + gπ1,1(x) then g ∈ Γ. Conversely, if

g ∈ Γ then the analysis of each case above exhibits the unique π = πλ satisfying these conditions.
Indeed, if g ∈ Γ1 we have π = (λ1, 2λ1, λ2, 2λ2), if g ∈ Γ2 we have π = (π1, π

′
1, 0, 0) where gπ1,1 = β1

and gπ0,1(x) = α1 − β1 (when α1 6= β1 this gives two linear equations for eπ1 and eπ
′
1 that have a

unique solution), and if g ∈ Γ3 we have π = (π1, 0, π2, 0), where (π1, π2) = h−1(2β1, 2β2)

Finally, let q′ = q
(n)

πλ , and note that µq′ ∈ MṼx̃ , so H(µq′) ≤ H(µṼx̃) ≤ log2

∣∣[n]k,s ×(t,w) [n]k,s
∣∣+

o(n) by Lemma 3.5. For the inequality in the other direction we consider each Γi separately.

If g ∈ Γ1 we let p′ = p
(n)
λ , note that H(µq′) = 2H(µp′) and log2 |[n]k,s| = H(µp′) + o(n) by

Lemma 3.5. Then log2

∣∣[n]k,s ×(t,w) [n]k,s
∣∣ ≤ 2 log2 |[n]k,s| = H(µq′) + o(n).

If g ∈ Γ2 we have
∣∣[n]k,s ×(t,w) [n]k,s

∣∣ ≤ ∣∣∣([n]
k

)
×t
([n]
k

)∣∣∣ =
(

n
t,k−t,k−t,n−2k+t

)
= 2H(µq′ )+o(n).

If g ∈ Γ3 we note that if (A,B) ∈ [n]k,s ×(t,w) [n]k,s, where k =
⌊

1
2n
⌋
, s =

⌊
1
2

(
n
2

)⌋
, t = bβ1nc and

w =
⌊
β2

(
n
2

)⌋
, then C := (A∩B)∪ (A∩B) ∈ [n]k′,s′ , where k′ = 2β1n+O(1) and s′ = 2β2

(
n
2

)
+O(n).

By Lemma 3.5, log2 |[n]k′,s′ | = H(µp′′) +o(n), where p′′ = p
(n)

λ̃
with λ̃ = h−1(2β1, 2β2). By the form

of π calculated above we have (q′)i1,1 = (q′)i0,0 = 1
2(p′′)i1 and (q′)i1,0 = (q′)i0,1 = 1

2(p′′)i0, so

H(µq′) = 2
∑
j=0,1

−1
2(p′′)ij log2

1
2(p′′)ij =

∑
j=0,1

((p′′)ij − (p′′)ij log2(p′′)ij) = n+H(µp′′).

Given C, there are at most 2n choices for (A,B), so log2

∣∣[n]k,s ×(t,w) [n]k,s
∣∣ ≤ n + log2 |[n]k′,s′ | =

H(µq′) + o(n). Thus in all cases we have the required bound. �

We conclude this subsection with the solution to Kalai’s conjecture.

Proof of Theorem 1.3. We first fix parameters n−1 � λ � δ � δ1 � δ2 � δ3 � ε � θ � C−1 �
ε′, κ � g. Suppose g = (α1, α2, β1, β2) ∈ [0, 1]4 with α = (α1, α2) ∈ Λ and let λ = h−1(α). By
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Lemma 10.2 ii, the maximum entropy measure µp for [n]k,s is given by p = p
(n)

λ(n) , where ‖λ−λ(n)‖1 ≤
δ. In particular, p is κ-bounded, since κ� (α1, α2).

First we consider case i, i.e. we suppose d(g,Γ) ≤ δ and prove that g is (n, δ, ε)-Kalai. Consider

A ⊂ [n]k,s with |A| ≥ (1− δ)n|[n]k,s|. Then µp(A) ≥ (1− δ1)n by Theorem 1.20, so setting p′ = p
(n)
λ

we have µp′(A) ≥ (1−2δ1)n as ‖λ−λ(n)‖1 ≤ δ. Next we fix g′ ∈ Γ with ‖g′−g‖1 < d(g,Γ)+δ < 2δ,

apply Lemma 10.4 to obtain πλ ∈ R4, and let q′ = q
(n)

πλ . Note that µq′ is κ-bounded as κ� g, that
µq′ has marginals µp′ and E(A,B)∼µq′ (|A ∩ B|,

∑
(A ∩ B)) = (t, w) ± 4δ(n, n2), as ‖g′ − g‖1 < 2δ.

As µp′(A) ≥ (1 − 2δ1)n, Theorem 1.17 gives µq′(A ×(t,w) A) ≥ (1 − δ2)n. Lemma 3.1 then gives

|A×(t,w) A| ≥ (1− δ3)n2H(q′) ≥ (1− ε)n
∣∣[n]k,s ×(t,w) [n]k,s

∣∣ by the final part of Lemma 10.4. Thus g
is (n, δ, ε)-Kalai, completing the proof of i.

We now consider case ii, i.e. we suppose d(g,Γ) ≥ ε′ and |[n]k,s ×(t,w) [n]k,s| ≥ (1 − ε)−n, and

prove that g is not (n, δ, ε)-Kalai. We adopt the running notation µq̃ = µq̃(n) = µṼnx̃n introduced
at the beginning of the section. By the equivalences in Lemma 10.3, for large n we either have
(a) q̃(n) is κ-bounded, or (b) dimV C([n]k,s ×(t,w) [n]k,s) ≤ λn. We can assume that (b) does not
hold, as here Lemma 9.5 gives A ⊂ [n]k,s with |A| ≥ (1 − δ)n|[n]k,s| and A ×(t,w) A = ∅, and so
|A ×(t,w) A| < 1 ≤ b(1 − ε)n[n]k,s ×(t,w) [n]k,sc. Thus g is not (n, δ, ε)-Kalai if (b) holds, so we can
assume that (a) holds, i.e. µq̃ is κ-bounded for large n. By Lemma 10.1 there is π ∈ R4 such that

q̃ = q
(n)
π , where as µq̃ is κ-bounded we have π ∈ [−C,C]4.

We will now prove that µp is not close to the marginal distribution of µq̃ and conclude by applying
Lemma 9.5. Consider the continuous function φ : [−C,C]4 → R, where

φ(σ) := ‖(β1, β2)− h∗(σ)‖1 +

∫ 1

0
|fλ(x)− gσ1,0(x)− gσ1,1(x)|dx.

As ‖g − g′‖1 ≥ ε′ for all g′ ∈ Γ, by Lemma 10.4, the continuity of φ and the compactness of
[−C,C]4 we have φ(σ) ≥ θ > 0 for all σ ∈ [−C,C]4; in particular, this holds for σ = π. As
E(A,B)∼µq̃

(
|A ∩B|,

∑
(A ∩B)

)
= (β1, β2

(
n
2

)
)± (1, 1), we have ‖(β1, β2)− h∗(π)‖1 � θ/2 for large n,

so
∫ 1

0 |fλ(x)− gπ1,0(x)− gπ1,1(x)|dx ≥ θ/2.

We now translate from the limit setting back to the finite setting. For large n, the previous
inequality implies

θn/4 ≤
n∑
i=1

|fλ(i/n)− gπ1,0(i/n)− gπ1,1(i/n)| =
n∑
i=1

|(p′)i1 − p̃i1|,

where p′ = p
(n)
λ and q̃ = q

(n)
π has marginals µp̃. As p = p

(n)

λ(n) and ‖λ − λ(n)‖1 ≤ δ, we deduce

‖p − p̃‖1 ≥ θn/8. Finally, we apply Lemma 9.3 ii (with δ1 = θ/2 and δ = ε) to find Bfull ⊂ [n]k,s
so that A = [n]k,s \ Bfull satisfies |A| ≥ (1 − o(1))|[n]k,s| > (1 − δ)n|[n]k,s| and |A ×(t,w) A| <
(1− ε)n|[n]k,s ×(t,w) [n]k,s|. Thus g is not (n, δ, ε)-Kalai, which completes the proof. �

10.2 Uniqueness in higher dimensions

In this subsection we illustrate how the method used to prove Theorem 1.3 can be applied in a
broader context. Throughout this subsection we work with the following setting.

• Fix α = (αd)d∈[D] and β = (βd)d∈[D] in (0, 1)D.
For all n ∈ N let zn = (

⌊
αdn

2
⌋
)d∈[D] and wn = (

⌊
αdn

2
⌋
)d∈[D].
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• Suppose Vn = (v
(n)
i )i∈[n] are (n, {0, 1})-arrays in [n]D such that (Vn, zn) is robustly generating

and robustly generic.

• Write Xn = ({0, 1}n)Vnzn ) and suppose that |Xn| > (1 + η)n, where η = η(α) > 0 is fixed.

• The arrays Vn have a ‘scaling limit’: there is a positive measurable function p : [0, 1]D → R
with

∫
[0,1]D p(x)dx = 1 such that for any measurable set B ⊂ [0, 1]D we have

lim
n→∞

n−1
∣∣{i ∈ [n] : n−1v

(n)
i ∈ B}

∣∣ =

∫
B
p(x)dx.

The assumption that (Vn, zn) is robustly generic is in fact redundant, as it can be shown to follow
from the scaling limit assumption, but for the sake of brevity we omit this deduction.

We say that (α,β) is (n, δ, ε)-good if the corresponding Vn-intersection problem exhibits ‘full
supersaturation’ analogous to that in Conjecture 1.2, i.e. any A ⊂ Xn with |A| ≥ (1 − δ)n|Xn|
satisfies

∣∣(A × A)
(Vn)∩
wn

∣∣ ≥ (1 − ε)n
∣∣(Xn × Xn)

(Vn)∩
wn

∣∣. We will outline the proof of the following
analogue of Theorem 1.3, which shows that if we exclude the case of ‘uniformly random sets’ (i.e.
α 6=

(
1/2
)
d∈[D]

) then ‘full supersaturation’ only occurs for one specific value of β.

Theorem 10.5. In the above setting, if α 6=
(
1/2
)
d∈[D]

then there is β∗ = β∗(α) ∈ (0, 1)D such

that for n−1 � δ � ε� ε′ � α,

i. if ‖β − β∗‖1 ≤ δ then (α,β) is (n, δ, ε)-good, and

ii. if ‖β − β∗‖1 ≥ ε′ and
∣∣(Xn ×Xn)

(Vn)∩
wn

∣∣ ≥ (1− ε)−n then (α,β) is not (n, δ, ε)-good.

Similarly to the previous subsection, we wish to determine when µq̃ = µṼx̃ (with Ṽ and x̃ as
in Definition 9.1) has marginals close to µp = µVz (here we are omitting the subscript n from our
notation). If these measures are κ-bounded, Lemma 10.1 gives λ ∈ RD such that

pi1 = (p
(n)
λ )i1 := fλ(v

(n)
i /n), where fλ(x) = eλ·x(1 + eλ·x)−1,

and π1,π2 ∈ RD such that q̃ij,j′ = (q
(n)
π1,π2)ij,j′ := gπ1,π2

j,j′ (v
(n)
i /n), where

gπ1,π2
0,0 (x) = Zπ1,π2(x)−1, gπ1,π2

0,1 (x) = gπ1,π2
1,0 (x) = eπ1·xZπ1,π2(x)−1,

gπ1,π2
1,1 (x) = eπ2·xZπ1,π2(x)−1, with Zπ1,π2(x) = 1 + 2eπ1·x + eπ2·x.

Again we study the marginal problem for µq̃ and µp via the limit marginal problem of characterising

λ and π such that fλ(x) = gπ1,π2
0,1 (x) + gπ1,π2

1,1 (x). The constraints are zn =
∑

i∈[n] p
i
1v

(n)
i and

wn =
∑

i∈[n] q̃
i
1,1v

(n)
i . The limit versions are h(λ) = α and h∗(π1,π2) = β, where

h(λ) =

∫
[0,1]D

xfλ(x)p(x)dx and h∗(π1,π2) =

∫
[0,1]D

xgπ1,π2
1,1 (x)p(x)dx.

Our next lemma is analogous to Lemma 10.2.

Lemma 10.6.

i. h is a homeomorphism between RD and h(RD).

ii. For large n we have µVnzn = µp, for some p = p
(n)

λ(n) where λ(n) → λ = h−1(α).
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We omit the proof of Lemma 10.6, as it is the same as that of Lemma 10.2, except in one detail
which we will now check, namely that the principal minors of the Jacobian of h are positive. To see
this, note that the Jacobian J has entries

Ji,j =

∫
x∈[0,1]D

xixj

( fλ(x)

1 + eλ.x

)
p(x)dx.

For any y ∈ RD we have yTJy =
∫
x∈[0,1]D |〈x,y〉|

2fλ(x)(1+eλ.x)−1p(x)dx. As fλ and p are positive,

we have yTJy > 0 whenever y 6= 0, as required. We also have the following analogue of Lemma
10.3; again, we omit the similar proof.

Lemma 10.7. Write µq̃(n) = µṼnx̃n . Then either

i. there is (j, j′) ∈ {0, 1}2 such that mini∈[n](q̃
(n))ij,j′ → 0, or

ii. for large n we have q̃(n) = q
(n)

π
(n)
1 ,π

(n)
2

, where (π
(n)
1 ,π

(n)
2 ) converges to some (π1,π2) ∈ R2D.

Furthermore, the following are equivalent to case ii:

i. there is κ > 0 such that µq̃(n) is κ-bounded for large n,

ii. there is λ > 0 such that dimV C((Xn ×Xn)
(Vn)∩
wn ) > λn for large n.

The uniqueness in Theorem 10.5 is explained by the following lemma which solves the limit
marginal problem.

Lemma 10.8. Suppose h(λ) = α 6= (1/2)d∈[D]. Then there is unique β∗ ∈ [0, 1]D such that there is

(π1,π2) ∈ RD×RD with h∗(π1,π2) = β∗ and fλ(x) = gπ1,π2
0,1 (x)+gπ1,π2

1,1 (x). Furthermore, (π1,π2)

is unique, and log2

∣∣∣(Xn ×Xn)
(Vn)∩
wn

∣∣∣ = H(µq′) + o(n), where q′ = q
(n)
π1,π2.

Proof. As h is injective and h(0) = (1/2)d∈[D] 6= α, we have λ 6= 0. Rearranging 1 − fλ(x) =

gπ1,π2
0,0 (x) + gπ1,π2

0,1 (x) gives eπ1·x + eπ2·x = eλ·x + e(π1+λ)·x, so (a) π1 = λ and π2 = π1 + λ, or (b)
π1 = π1 + λ and λ = π2. However, (b) cannot hold, as λ 6= 0. Thus π1 = λ and π2 = 2π1, so
gπ1,π2

1,1 (x) = fλ(x)2 and β∗ =
∫
x∈[0,1]D xfλ(x)2p(x)dx. Uniqueness of (π1,π2) is clear, and the final

estimate follows in the same way as the case g ∈ Γ1 of Lemma 10.4. �

Given the above lemmas, the proof of Theorem 10.5 is very similar to that of Theorem 1.3, so
we omit the details.

11 Optimal supersaturation

In this section we characterise the optimal level of supersaturation for V-intersections in terms of a
certain optimisation problem; as outlined in subsection 1.4, this corresponds to the optimal choice of
measure satisfying the hypotheses of Theorem 1.17, i.e. determining Hmax in the following setting,
which we adopt throughout this section.

• Let 0 < n−1, δ � κ� γ1, γ
′
1 � γ2, γ

′
2 � ε� α,D−1, C−1, k−1.

• Suppose V = (vi : i ∈ [n]) and each vi ∈ ZD is R-bounded, where R ∈ RD with maxdRd < nC .

• Suppose V is γ′i-robustly (γi,R)-generic and γi-robustly (R, k)-generating for i = 1, 2.

• Let z ∈ ZD and X = ({0, 1}n)Vz with |X | ≥ (1 + α)n. Write µp := µVz .
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• Let w ∈ ZD and let Q denote the set of q such that µq is a κ-bounded product measure on
({0, 1} × {0, 1})n with both marginals µp and V∩(µq) = w.

• Let Hmax = maxq∈QH(µq) if Q 6= ∅ or Hmax = 0 if Q = ∅.

The main result of this section is as follows.

Theorem 11.1. In the above setting,

i. if A ⊂ X with |A| > (1− δ)n|X | then |(A×A)V∩w | ≥
⌊
(1− ε)n2Hmax

⌋
.

ii. there is A ⊂ X with |A| > (1− ε)n|X | and |(A×A)V∩w | ≤ (1 + ε)n2Hmax.

We start by giving the short deduction of statement i from Theorem 1.17. The hypotheses of
the latter hold by Lemma 1.21, and Theorem 1.20 gives µp(A) > (1 − δ′)n, where δ � δ′ � κ. We
can assume Q 6= ∅, and Theorem 1.17 applied to q ∈ Q gives µq((A × A)V∩w ) > (1 − ε/2)n. Also,
by Lemma 3.1, B := {x ∈ ({0, 1} × {0, 1})n : log2 µq(x) /∈ −Hmax ± δn} has µq(B) ≤ (1 − δ3)n, so
|(A×A)V∩w | ≥ 2Hmax−δnµq((A×A)V∩w \ B) ≥ (1− ε)n2Hmax , as required.

The remainder of the section will be occupied with the proof of statement ii. A key idea is the
use of ‘empirical measures’, which we will now introduce. First we note by Lemma 1.21 that p is
κ′-bounded, where

γ1, γ
′
1 � κ′ � γ2, γ

′
2.

We fix a partition of [n] into sets S1, . . . , SM so that

|pi − pj | ≤ κ and ‖vi − vj‖R ≤ κ if i, j ∈ Sm for some m ∈ [M ].

This can be achieved with M ≤ (2κ−1 + 2)D+1. We define the type of A ⊂ [n] as k(A) = (|A ∩
S1|, . . . , |A ∩ SM |). We let k = (k1, . . . , kM ) be the most common type of sets in X , write

B = {A ∈ X : k(A) = k},

and define the empirical measure µp′ by

(p′)i1 = km/|Sm| for all m ∈ [M ], i ∈ Sm.

Note that |B| ≥ |X |/nM . The following lemma shows that µp′ is a good approximation to the
maximum entropy measure µp.

Lemma 11.2. ‖p− p′‖1 ≤ κn.

Proof. Let E be the set of A ⊂ [n] such that some ||A∩Sm|−
∑

i∈Sm pi| >
κn
2M . Let κ� κ1 � κ2 � κ′.

Then µp(E) ≤ (1− κ1)n by Chernoff’s inequality, so |E ∩ X | < (1− κ2)n|X | < |B| by Theorem 1.20.
We deduce |km −

∑
i∈Sm pi| ≤ κn/2M for all m ∈ [M ], so

∑
m∈[M ] |km −

∑
i∈Sm pi| ≤ κn/2; the

lemma follows. �

We use a similar construction of an empirical measure that represents w-intersections. Let G be
the graph with V (G) = B where AB ∈ E(G) if |A ∩B|V = w. We define the type of AB ∈ E(G) as
tAB = (t1, . . . , tM ), where tm = |A ∩ B ∩ Sm| for m ∈ [M ]. A type t gives rise to a measure µq(t),
where for i ∈ Sm we define

q(t)i1,1 = tm/|Sm|, q(t)i1,0 = q(t)i0,1 = (km − tm)/|Sm| and q(t)i0,0 = (|Sm| − 2km + tm)/|Sm|.

Note that each µq(t) has both marginals µp′ and ‖V∩(µq(t))−w‖R ≤ ‖p− p′‖1 ≤ κn.
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We can assume
H(µq) < log2 |E(G)| − εn/2 for all q ∈ Q, (11)

otherwise the proof is complete. We fix a type t̃ occurring at least e(G)/n2M times and set q̃ = q(t̃).
Then H(µq̃) ≥ log2(e(G)/n2M ), so q̃ /∈ Q by (11). The following lemma will show that all empirical
measures associated to edges of G are close to q̃; we will then use this and q̃ /∈ Q in Lemma 11.5 to
find a large independent set in G, which will complete the proof of Theorem 11.1.

We fix λ with γ1, γ
′
1 � λ� κ′.

Lemma 11.3. Suppose CD ∈ E(G) has type t′. Then ‖q̃− q(t′)‖1 < λn.

For the proof we require the following bound analogous to (11) for a wider class of measures.

Lemma 11.4. Let µq′ be a λ-dense product measure on ({0, 1} × {0, 1})n with marginals µp′ and
V∩(µq′) = w′ with ‖w −w′‖R ≤ κn. Then H(µq′) < log2 |E(G)| − εn/3.

Proof. We will obtain the required bound from (11) a measure in Q close to µq′ . Recall that p′

is κ′-bounded and ‖p − p′‖1 ≤ κn Consider q′′ that minimises ‖q′′ − q′‖1 subject to µq being κ-
bounded and having marginals µp. For each i we can construct {(q′′)ij,j′} from {(q′)ij,j′} by moving
probability mass |pi − p′i| to create the correct marginals, and moving a further mass of at most 2κ
while maintaining the same marginals to ensure κ-boundedness. Therefore ‖q′′ − q′‖1 ≤ 6κn.

Now we will perturb q′′ to obtain q ∈ Q, i.e. we maintain κ-boundedness and the same marginals
µp, and obtain V∩(µq) = w.

As µq′ is λ-dense and κ� λ there is S ⊂ [n] with |S| ≥ λn/2 such that (q′′)ij,j′ ≥ λ/2 for all i ∈ S
and j, j′ ∈ {0, 1}. As V is γ′1-robustly (γ1,R)-generic, and λ� γ′1 we can find M ≥ |S|/2D ≥ λn/4D
disjoint sets I1, . . . , IM ⊂ S, with |Im| = D and | det(VIm)| ≥ γ1R1 · · ·RD for all m ∈ [M ].

Write V∩(µq′′) = w′′, and note that ‖w′′ − w‖R ≤ ‖q′′ − q′‖1 ≤ 6κn. Then u = (w − w′′)/M
has ‖u‖R ≤ 24Dκλ−1 <

√
κ. Applying Cramer’s rule as in Lemma 4.8, for each m ∈ [M ] we find

coefficients bi with
∑

i∈Im bivi = u and |bi| ≤
√
κD!γ−1

1 .

Now we obtain q from q′′ where for each i ∈ ∪m∈[M ]Im we let qi1,1 = (q′′)i1,1 + bi, q
i
0,1 = qi1,0 =

(q′′)i1,0 − bi and qi1,1 = (q′′)i1,1 + bi, and qij,j′ = (q′′)ij,j′ otherwise. By construction q ∈ Q and

‖q′ − q‖1 ≤ ‖q′ − q′′‖1 + ‖q′′ − q‖1 < κ1/3n. The lemma now follows from (11). �

Proof of Lemma 11.3. Suppose for a contradiction that ‖q̃ − q(t′)‖1 ≥ λn. Consider the inter-
polation q′ = λq(t′) + (1 − λ)q̃. Recall that any µq(t) has marginals µp′ and satisfies ‖V∩(µq(t)) −
w‖R ≤ κn, so µq′ has the same properties. Also, as H(µq̃) ≥ log2(e(G)/n2M ) we have H(µq′) >
log2 |E(G)| − εn/3.

As ‖q̃−q(t′)‖1 ≥ λn we can find S ⊂ [n] with |S| ≥ λn/2 such that
∑

j,j′∈{0,1} |q̃ij,j′ − q(t′)ij,j′ | ≥
λ/2 for all i ∈ S. As q̃ and q(t′) have the same marginals µp′ we have |q̃ij,j′ − q(t′)ij,j′ | ≥ λ/8 for all

i ∈ S and j, j′ ∈ {0, 1}. For each such i, j, j′ we deduce (q′)ij,j′ ≥ λ2/8. However, this contradicts

Lemma 11.4 (with λ2/8 in place of λ). �

The following lemma completes the proof of Theorem 11.1.

Lemma 11.5. There is A ⊂ X with |A| ≥ (1− ε)n|X | and (A×A)V∩w = ∅.

Proof. We can assume e(G) ≥ (1+ε/2)n|B|, as otherwise by Turán’s theorem ([30], see also [5, IV.2])
G contains an independent set A of order (1+ε/2)−n|B|/2 ≥ (1−ε)n|X |. As log2 |X | ≥ H(µp)−κn by
Lemma 3.5 and ‖p−p′‖1 ≤ κn by Lemma 11.2 we deduce H(µq̃) ≥ log2(e(G)/n2M ) ≥ H(µp′)+εn/4.
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We have H(µq̃) =
∑

i∈[n]H(q̃i) and H(µp′) =
∑

i∈[n]H(p′i), where each H(q̃i) ≤ log2 4 = 2, so there

is T ⊂ [n] with |T | ≥ εn/16 such that H(q̃i) ≥ H(p′i) + ε/16. As µq̃ has marginals µp′ we deduce
q̃i0,1 = q̃i1,0 > ε2 for all i ∈ T . Let T1 = {i ∈ T : q̃i1,1 < λ} and T0 = {i ∈ T : q̃i0,0 < λ}. By Lemma
11.4 we have |T1| ≥ |T |/4 or |T0| ≥ |T |/4.

Case 1: |T1| ≥ |T |/4.

Let B∗ = {B ∈ B : |B ∩ T1| ≥ κ′|T1|/2}. As p is κ′-bounded and |T1| ≥ εn/64 we have
µp(B \ B∗) ≤ (1 − cκ′)n, which by Theorem 1.20 gives |B∗| ≥ |B|/2. Let G∗ = G[B∗] denote the
induced subgraph of G with vertex set B∗.

We claim that for all AB ∈ E(G∗) we have |A ∩ B ∩ T1| < 4λ1/2n. Indeed, suppose for a
contradiction that |A ∩ B ∩ T1| ≥ 4λ1/2n. Let J be the set of m ∈ [M ] with |T1 ∩ Sm| ≥ 2λ1/2|Sm|.
Then

∑
m∈J |Sm| ≥ 2λ1/2n. For all i ∈

⋃
m∈J Sm we have q(tAB)i1,1 − q̃i1,1 ≥ 2λ1/2 − λ > λ1/2, by

definition of J and T1. But then ‖q̃ − q(tAB)‖1 ≥ λ1/2
∑

m∈J |Sm| > λn. This contradicts Lemma
11.3, so the claim holds.

Therefore, for any U ⊂ T1 of size u = d4λ1/2ne, the family AU := {B ∈ B∗ : U ⊂ B} forms
an independent set in G∗. Consider a uniformly random choice of such U . For any B ∈ B∗, as
|B ∩ T1| ≥ κ′|T1|/2 we have P(B ∈ AU ) ≥ (κ′/4)u ≥ (1 − λ1/3)n, as λ � κ′. Therefore EU |AU | =∑

B∈B∗ P(B ∈ AU ) ≥ (1− ε)n|X |. Thus for some U we obtain an independent set AU of at least this
size, which completes the proof of Case 1.

Case 2: |T0| ≥ |T |/4.

The proof of this case is similar to that of Case 1, so we just outline the differences. Now we let
G∗ = G[B∗], where B∗ = {B ∈ B : |T0 \ B| ≥ κ′|T0|/2}. Similarly to Case 1, we have |B∗| ≥ |B|/2,
and there is no edge AB ∈ E(G∗) with |T0 \ (A ∪B)| ≥ 4λ1/2n. Thus for any U ⊂ T0 with |U | = u,
the family AU := {B ∈ B∗ : U ∩B = ∅} is an independent set in G∗. Consider a uniformly random
choice of such U . For any B ∈ B∗, as |T0 \B| ≥ κ′|T0|/2 we have P(B ∈ AU ) ≥ (κ′/4)u ≥ (1−λ1/3)n,
as λ� κ′. Therefore for some U we obtain an independent set AU with size at least the expectation,
which is at least (1− ε)n|X |. �

12 Exponential continuity

In this section we recast our results using the following notion of continuity that arises naturally
when comparing distributions according to exponential contiguity.

Definition 12.1. Let Ω = (Ωn)n∈N and µ = (µn)n∈N, where each µn is a probability measure on
Ωn. Let F = (Fn)n∈N where each Fn is a set of measurable subsets of Ωn. We say that B = (Ω,F)
is an exponential probability space and write M(B) = M(Ω) for the set of such µ. We write
ν ≈ µ when ν ≈F µ. Given exponential probability spaces B = (Ω,F), B′ = (Ω′,F ′) we say that
f :M(Ω)→M(Ω′) is exponentially continuous at µ ∈M(Ω) if µ′ ≈ µ⇒ f(µ′) ≈ f(µ).

Theorem 12.2. Let 0 < n−1 � ζ � κ, γ � D−1,M−1, C−1, k−1. Suppose

i. Bs = (Ωs,Fs) are exponential probability spaces with Ωs,n = Jns for s ∈ S,
ii. µq is κ-bounded product measure on Ωn,

iii. V = (vij1,...,jS ) is an (n,
∏
s∈S Js)-array in ZD,

iv. all ‖vij1,...,jS‖R ≤ 1, where R = (R1, . . . , RD) with maxdRd < nC ,

v. U = {u1, . . . ,uM} ⊂ ZD is R-bounded and (k, kζn,R)-generating,
vi. V has γ-robust transfers for U ,
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vii. w ∈ ZD with ‖w − V(µq)‖R < ζn.

Let B = (Ω,F) =
∏
s∈S Bs and B′ = (Ω′,F ′), where Ω′n = (Ωn)Vw and F ′n = {A ∩ Ω′n : A ∈ F}. Let

f be restriction of measure from M(Ω) to M(Ω′). Then f is exponentially continuous at µq.

Proof. Let µq have marginals (µps : s ∈ S) and suppose µq′ ≈ µq with marginals (µp′s : s ∈ S).
Suppose n−1 � δ � ζ � ε � κ, γ. We want to show for A =

∏
s∈S As ∈ F ′n that f(µq)(A) >

(1− δ)n ⇒ f(µq′)(A) > (1− ε)n and f(µq′)(A) > (1− δ)n ⇒ f(µq)(A) > (1− ε)n. As f(µq)(A) =
µq(A)/µq(Ω′n) and f(µq′)(A) = µq′(A)/µq′(Ω

′
n), it suffices to show that µq(Ω′n), µq′(Ω

′
n) > (1− ε′)n

with ε′ � ε. This holds for µq(Ω′n) by Theorem 6.3, and so for µq′ by exponential contiguity. �

Remark 12.3. In the setting of the above theorem, if µq has marginals (µps : s ∈ S) µq′ has
marginals (µp′s : s ∈ S), and each Fs,n is the set of subsets of some ∆s,n ⊂ Ωs,n, then we have
µq ≈ µq′ precisely when each µps ≈ µp′s : this holds by Theorem 7.2 and the following lemma.

Lemma 12.4. Suppose µ = (µn)n∈N and ν = (νn)n∈N where each µn and νn is a probability measure
on Ωn. Suppose also µ′ = (µ′n)n∈N and ν ′ = (ν ′n)n∈N where each µ′n and ν ′n is a probability measure
on Ω′n. Let ∆ = (∆n)n∈N with each ∆n ⊂ Ωn and ∆′ = (∆′n)n∈N with each ∆′n ⊂ Ω′n. Then
µ× µ′ ≈∆×∆′ ν × ν ′ if and only if µ ≈∆ ν and µ′ ≈∆′ ν

′.

Proof. Let n−1 � δ � ε. Suppose first that µ × µ′ ≈∆×∆′ ν × ν ′. Consider A1
n ⊂ ∆n with

µn(A1
n) > (1 − δ)n. Let An = A1

n × ∆′n. Then (µn × µ′n)(An) = µn(A1
n) > (1 − δ)n, so νn(A1

n) =
(νn × ν ′n)(An) > (1 − ε)n by assumption, i.e. µ .∆ ν. Similarly ν .∆ µ, so µ ≈∆ ν, and similarly
µ′ ≈∆′ ν

′. Now suppose µ ≈∆ ν and µ′ ≈∆′ ν
′. Let Bn = {(x,y) ∈ ∆n × ∆′n : (νn × ν ′n)(x,y) <

(1 − ε)n(µn × µ′n)(x,y)}. We have Bn ⊂ (B1
n ×∆′n) ∪ (∆n × B2

n), where B1
n = {x ∈ ∆n : νn(x) <

(1− ε)n/2µn(x)} and B2
n = {y ∈ ∆′n : ν ′n(y) < (1− ε)n/2µ′n(y)}. By assumption, µn(B1

n) ≤ (1− 2δ)n

and µ′n(B2
n) ≤ (1− 2δ)n. Therefore (µn × µ′n)(Bn) ≤ 2(1− 2δ)n < (1− δ)n, i.e. µ× µ′ .∆×∆′ ν × ν ′.

Similarly, ν × ν ′ .∆×∆′ µ× µ′, so µ× µ′ ≈∆×∆′ ν × ν ′. �

13 Concluding remarks

There are several natural directions in which to explore potential generalisations of our results:
instead of associating vectors in ZD to each coordinate we may consider values in another (abelian)
group G, and we may consider more general functions of the coordinate values, e.g. a (low degree)
polynomial (e.g. a quadratic for application to the Borsuk conjecture) rather than a linear function
(is there a ‘local’ version of Kim-Vu [24] polynomial concentration?). Even for linear functions in one
dimension, our setting seems somewhat related to some open problems in Additive Combinatorics,
such as the independence number of Paley graphs, but here our assumptions seem too restrictive
(one cannot use transfers). We may also ask when better bounds hold, e.g. for G = Z/6Z we recall
an open problem of Grolmusz [15]: is there a subexponential bound for set systems where the size
of each set is divisible by 6 but each pairwise intersection is not divisible by 6?

Our results may interpreted as giving robust statistics in the theory of social choice. Suppose
that we represent a voter by an opinion vector x ∈ Jn, where each xi represents an opinion on the
ith issue, for example, when |J | = 2 each issue could be a question with a yes/no answer. Then we
can represent a population of voters by a probability measure µ on Jn, where µ(x) is the proportion
of a voters with opinion x. Now suppose that we want to compare two (or more) voters. One
natural measure of comparison is to assign a score to each opinion and calculate the total score on
opinions where they agree. If this is too simplistic, then we could assign score vectors in some RD,
where D is small enough to give a genuine compression of the data, but large enough to capture the
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varied nature of the issues: we compare x and x′ according to V∩(x,x′). Taking the perspective of
robust statistics (see [16]), it is natural to ask whether this statistic is sensitive to our uncertainty in
the probability measure that represents the population as a whole: Theorem 12.2 (with the remark
following it) gives one possible answer.

Acknowledgements: The authors would like to thank the referees for a careful reading of the paper
and many helpful comments.
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