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Abstract

We solve a generalised form of a conjecture of Kalai motivated by attempts to improve the
bounds for Borsuk’s problem. The conjecture can be roughly understood as asking for an analogue
of the Frankl-Rddl forbidden intersection theorem in which set intersections are vector-valued. We
discover that the vector world is richer in surprising ways: in particular, Kalai’s conjecture is false,
but we prove a corrected statement that is essentially best possible, and applies to a considerably
more general setting. Our methods include the use of maximum entropy measures, VC-dimension,
Dependent Random Choice and a new correlation inequality for product measures.

1 Introduction

Intersection theorems have been a central topic of Extremal Combinatorics since the seminal paper
of Erdés, Ko and Rado [9], and the area has grown into a vast body of research (see [2], [4] or [19]
for an overview). The Frankl-Rodl forbidden intersection theorem is a fundamental result of this
type, which has had a wide range of applications to different areas of mathematics, including discrete
geometry [12], communication complexity [28] and quantum computing [6].

To state their result we introduce the following notation. Let [n] = {1,...,n} and let ([Z]) =
{A C[n]:|A|l = k}. For A C ([Z]) and t € [n] let A x; A be the set of all (4,B) € A x A with
|A N B| =t. Note that ([Z]) Xy ([Z]) is non-empty if and only if max(2k —n,0) < ¢ < k. Frankl and
Rodl proved the following ‘supersaturation theorem’, showing that if ¢ is bounded away from these
extremes and A is ‘exponentially dense’ in ([Z]) then A x; A is ‘exponentially dense’ in ([Z}) X4 ([Z]).

Theorem 1.1 (Frankl-Rodl [11]). Let! 0 < n™! < § < e < 1 and max(2k —n,0)+en <t < k—en.
Suppose A C ([Z]) with |A| > (1 —6)"(}). Then |A x; Al > (1 —&)" ([Z]) X ([Z])

In a recent survey on the Borsuk problem, Kalai [21] remarked that the Frankl-R6dl theorem can
be used to give a counterexample to the Borsuk conjecture (the Frankl-Wilson intersection theorem
[13] was used in Kahn and Kalai’s celebrated counterexample [20]), and suggested that improved
bounds might follow from a suitably generalised Frankl-Ro6dl theorem. He proposed the following
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as a function of 8, i.e. a < a(B). Thus, in Theorem 1.1 ‘™! <« § < &’ means that for any 0 < € < 1 there is o > 0
such that for any 0 < § < §p there is no such that for n > no the theorem holds.



supersaturation conjecture as a possible step in this direction, in which one measures a set by its size
|A] = > ,cqalanditssum Y A =3%"._,i. Let [n]y s be the set of A C [n] with [A] =k and ) A = s.
For A C [n]y s write

AX(uy A={(A4,B) e Ax A: A# B with [ANB| =t and Y (AN B)=w}.

Conjecture 1.2 (Kalai). Let 0 < n™! < 0 < g,01,00,01,82 < 1, k = |ain], s = |a2(})],
t = |bin] and w = |Ba(3)|. Suppose A C [n]g s with |A] > (1 = 6)"|[n]ys|. Then |A X Al >
L(l —e)" Hn]k,s X (tw) [n]k,su

Somewhat surprisingly, this conjecture is false! In fact, although the conjecture holds in a number
of natural special cases, it fails quite dramatically in general; for most pairs («, ag) there is exactly
one choice of (1, B2) for which Conjecture 1.2 holds. Before stating this result, we first remark that
Conjecture 1.2 is only non-trivial when [n]y s is exponentially large in n (when [[n]g s X (1w) [P]k,s| >
(1 — &)™, requiring |[n]ys| > (1 —€)™™?). Defining a1, s as in Conjecture 1.2, we can therefore
assume that (a1, ag) belongs to

A={(z,y):0< 2z < 1,2° <y <2x— 2%}

We say that g = (a1, a2, 61, 82) is (n,0,¢)-Kalai if Conjecture 1.2 holds for g, i.e. any A C [nlgs
with |A] > (1 — 6)"|[n]k,s| satisfies |A X (1) Al > [(1 — )" Hn]ks X (t.) [Mk,s| |- We will classify the
Kalai parameters g in terms of the following set I'; note that the definition of I'y uses two functions
1, B2 : A — R that will be defined in Section 10, see (9). Let I' = [ ;¢ (5 T'i, where

(Popular intersections) TI'q :{(al,ag,ﬁl,,@) s(ag,a0) €A, a1 # ag and §; = ﬁi(al,ag)};
(Doubly random) Iy ={(a,,8,8) : 0 < a < 1 and max(2ae — 1,0) < 8 < a};
(Uniformly random sets) T3 ={(1/2,1/2,01,52) : (261,282) € A}.

Theorem 1.3. Supppose g = (a1, as, B1, f2) € [0,1]* with (a1,0) EA andn™ ! < d<e<e K g.
Let d(g,T) = inf{||g — g'|1: & € T}.

i. If d(g,T') <6 then g is (n,6,e)-Kalai.

i. If d(g,T) > €' and |[n]k,s X @1 w) [P]k,s] > (1 —€)™™ then g is not (n,d,c)-Kalai.

Remark 1.4. The condition |[n]xs X () [7]k,s| > (1 —€)™" in Theorem 1.3 just appears to ensure
that the lower bound on | A X,y Al in Conjecture 1.2 is non-trivial.

The labels assigned to the parts of I' correspond to the following interpretations:

e Popular intersections: For (g, as) € A with oy # «ay there is exactly one (a1, ag, 51, 52) €
I'y. For n large, the value (8in, B2(})) is essentially the most popular intersection between sets
n [n]k,s, where (k,s) = (a1n, az (g))

e Doubly random: If A C [n] is a uniformly random set of size k = an, the expected size
of > Ais s = a(}) + o(n?). Similarly, if two sets A and B in [n];, with |[AN B| = Bn are
randomly selected then the expected value of > (AN B) is B(4) + o(n?). Theorem 1.3 for I
shows Conjecture 1.2 holds for ‘random-like Sn intersections’ between ‘random-like an sets’,
provided « and  satisfy the Frankl-Rédl conditions.



e Uniformly random sets: Most sets A C [n] have k = in + o(n), s = 1(3) + o(n?) and
|AN[2L]| = L=+ o(n) for all L < n/2. Intersections of type (t,w) = (B1n, B2(})) can only occur
between such sets if (281 + 0(1),252 + o(1)) € A. Theorem 1.3 for I's shows that Conjecture
1.2 is true for (o, a2) = (1/2,1/2) provided this necessary condition is fulfilled.

Remark 1.5. While Theorem 1.3 shows that Conjecture 1.2 is often false, we will also give two
concrete counterexamples, which illustrate two different reasons why the conjecture fails. We defer
these examples to Section 5 as their analysis uses some results from Sections 2—4.

Although the bounds from Conjecture 1.2 in general do not hold, it is still natural to ask whether
we can find any (t, w)-intersection in such ‘exponentially dense’ subsets A C [n]; 5. If so, what is the
optimal lower bound on |A X4 ,,) A|? This paper investigates these questions; in particular, we give
a natural correction to Conjecture 1.2.

Our results will apply to the following more general setting of vector-valued set ‘sizes’: given
vectors V = (v; : i € [n]) in R, we define the V-size of A C [n] by

Aly =) vi.

€A

We note that the Frankl-Rodl theorem concerns V-sizes where D = 1 and all v; = 1, and the Kalai
conjecture concerns V-sizes where D = 2 and v; = (1,4).

1.1 Vector-valued intersections

In order to prove our forbidden V-intersection theorem, we need to work over a general alphabet,
where we associate a vector with each possible value of each coordinate, as follows.

Definition 1.6. Suppose v} € ZP for alli € [n] and j € J. We call ¥V = (v%) an (n, J)-array in zP.
For a € J" we define ‘
Y

i€[n]

For A C J" and w € Z” we define AY, ={ac A:V(a) =w}.

By identifying subsets of [n] with their characteristic vectors in {0, 1}", and pairs of subsets of [n]
with vectors in ({0,1} x {0,1})™, this definition extends the definition of V-size and V-intersection
via the following specialisation (note that V(A) = |A|y and VA (A4, B) = |AN Bly).

Definition 1.7. Suppose V = (v; : i € [n]), where v; € ZP for all i € [n]. We also let V = (v vh)
denote the (n,{0,1})-array in Z”, where vi = v; and v{ = 0. We let Vn = ((vm) ;) denote the

(n, {0,1} x {0,1})-array in Z”, where (vn)} 1 = Vi and (Vm)J ;= 0 otherwise.

We also introduce a class of norms on R” to account for the possibility that different coordinates
of vectors in V may operate at different scales. In the following definition we think of R as a scaling;
e.g. for the Kalai vectors (1,7), we take R = (1,n).

Definition 1.8. Suppose R = (Ry,...,Rp) € RP. We define the R-norm on R by |v|r =
maxge(pj |va|/Ra. We say that V = (V;) is R-bounded if all HV§||R <1



Our V-intersection theorem requires two properties of the set of vectors V. The first property,
roughly speaking, says that any vector in Z” can be efficiently generated by changing the values of
coordinates, and that furthermore this holds even if a small set of coordinates are frozen, so that no
coordinate is overly significant. To see why such a condition is necessary, suppose that D = 1 and
almost all coordinates have only even values: then there are large families where all intersections
have a fixed parity.

Definition 1.9. Let V = (v}) be an (n, J)-array in ZP. We say that V is y-robustly (R, k)-generating
in ZP if for any v € ZP with ||v||g < 1 and T C [n] with |T| < yn there is S C [n] \ T with |S]| < k

and jj, ji € J for all i € S such that v= 3, (v} — Vi)

Note that if V = (v; : i € [n]), considered as an (n, {0, 1})-array, then Definition 1.9 says that for
all such v and T there are disjoint S, 5" C [n]\T with |S|4|S’| < ksuchthat v =73, ¢vi—=> ;¢ Vi.
To illustrate the definition, and for future reference, we note that

the Kalai vectors are 0.1-robustly ((1,n), 7)-generating in Z?2. (1)

To see this, first note that for any vector (0,b) with b € [n/2], there are n/3 disjoint pairs {i1,ia}
with (0,b) = (1,41) — (1,42). This implies that for any vector (0, b) with |b| < n there are n/9 disjoint
sets {i1, 42, j1, 72} with (0,b) = (1,41) + (1,42) — (1,51) — (1,71). Also, there are n/6 disjoint triples
{i1,12,13} with (1,0) = (1,41) + (1,42) — (1,43). Combined, given T" C [n] with |7 <n/10 <n/9—3
and (a,b) € Z* with ||(a,b)||r < 1, there are disjoint S, S’ C [n] \ T with |S| + |S| < 7 with
(a,b) = > ;cq Vi — D ies Vi- Thus (1) holds.

We also make the following ‘general position’ assumption for V.

Definition 1.10. Suppose V = (v;) is an (n, {0, 1})-array in Z”. For I € ([g}), let Vi ={v;:iel}
and say that [ is (y, R)-generic if | det(Vr)| > v [[4e(p) 2a- We say that V is 7/-robustly (v, R)-generic
if for any X C [n] with |X| > +'n, some I C X is (v, R)-generic for V.

We note for future reference that
the Kalai vectors are y-robustly (v/2, R)-generic for any ~ > 0. (2)

Indeed, if X C [n] with |X| > yn then we can choose i,i" € X with |i —i'| > yn — 1 > yn/2, and
then (1,4) and (1,4") span a parallelogram of area |i —i'| > (y/2) - 1-n.

We are now in a position to state our main theorem. It shows that, under the above assumptions
on V, there are only two obstructions to a set X = ({0,1}")Y satisfying a supersaturation result as
in Kalai’s conjecture (case 7): either (case i7) there is a small set By, C X responsible for almost
all w-intersections in X, or (case #ii) there is a large set Bempry C X containing no w-intersections.
Furthermore, in case i1 we obtain optimal supersaturation relative to Byy.

Theorem 1.11. Let n™! < 6 < v1,7] < Y2,7 < &, DL, C~ 1 k™! and R € RP with maxg Rq <
n®. Suppose V = (v; : i € [n]) where each v; € ZP is R-bounded and V is v;-robustly (v;, R)-generic
and vj-robustly (R, k)-generating for j = 1,2. Let z,w € ZP with z # w and let X = ({0,1}")).
Then one of the following holds:

i. All AC X with |A| > (1 —6)"|X| satisfy |(A x A)X0| > (1 —e)"|(X x X)¥n.

i. There exists Byyy C X with |Bpa| < (1 —0)"|X| satisfying

(X % XN\ (Bra  Bran)w'| < (1= 8)"(X x X)0].

4



iii. There is Bempty C X with [Bempty| > [(1 — €)™ X|] satisfying (Bempty X Bempty)u = 0.
Furthermore, if i1 holds and iii does not then any B C By with |B| > (1 — 6)"|Byuy| satisfies
(B x B3| = (1—e)"|(X x X)),

Remark 1.12.

i. Theorem 1.11 applies to (¢, w)-intersections in [n] s, as we have shown above that its hypotheses
hold for the Kalai vectors.

ii. As indicated above, cases ii and #ii of Theorem 1.11 may simultaneously hold (see counterex-
ample 1 of Section 5).

iii. The assumption that V is yi-robustly (R, k)-generating is redundant, as it is implied by ~2-
robustly (R, k)-generating, but the assumptions of ~j-robustly (v;, R)-generic for j = 1,2 are
incomparable, and our proof seems to require this ‘multiscale general position’.

We have highlighted Theorem 1.11 as our main result for the sake of giving a clean combinatorial
statement. However, we will in fact obtain considerably more general results in two directions, whose
precise statements are postponed until later in the paper.

e Our most general result, Theorem 6.3, implies cross-intersection theorems for two or more
families and applies to families of vectors over any finite alphabet.

e Theorem 1.11 leaves open the question of how many w-intersections are guaranteed in large
subsets of X when case (ii) holds; this is answered by Theorem 11.1.

It is natural to ask under which conditions the alternate cases of Theorem 1.11 hold. These
conditions are best understood in relation to our proof framework, so we postpone this discussion to
section 1.4, after we have introduced the two principal components of the proof.

1.2 A probabilistic forbidden intersection theorem

A key paradigm of our approach is that V-intersection theorems often have equivalent formulations in
terms of certain product measures (the maximum entropy measures described in the next subsection),
and that the necessary condition for these theorems appears naturally as a condition on the product
measures. (A similar idea arose in the new proof of the density Hales-Jewett theorem developed by
the first Polymath project [26], although in this case the natural ‘equal slices’ distribution was not
a product measure.)

To illustrate this point, we recast the Frankl-R6dl theorem in such terms. Again we identify
subsets of [n] with their characteristic vectors in {0, 1}", on which we introduce the product measure
tip(x) = [lie[n) Pr;» where p1 = k/n and pg = 1 — p1. Pairs of subsets are identified with {0, 1}" x
{0,1}™, which we can identify with ({0,1} x {0,1})", on which we introduce the product measure
tq(%,X') = [Licpn) eiap» Where g1 = t/n, qo1 = qio = (k= 1t)/n and qop = (n — 2k +t)/n. It
follows from our general large deviation principle in the next subsection (or is easy to see directly in
this case) that the hypothesis of Theorem 1.1 is essentially equivalent to p,(A) > (1 —§)"™ and the
conclusion to jiq(A x;A) > (1 —¢)™. Furthermore, the assumption on ¢ can be rephrased as ¢; ;» > ¢
for all j, 5" € {0,1}, and this indicates the condition that we need in general.

Let us formalise the above discussion of product measures in a general context. Although we only
considered the cases when the ‘alphabet’ J is {0,1} or {0,1} x {0,1}, we remark that it is essential
for our arguments to work with general alphabets, as the proofs of our results even in the binary
case rely on reductions that increase the alphabet size.



Definition 1.13. Suppose p = (p; 21 € [n],j € J) with all p§- € [0,1] and Zjerz- = 1for all i € [n].
The product measure pp on J" is given, for a € J", by up(a) = [I;cp, Pa,-

Given an (n,J)-array V and a measure p on J", we write V(i) = EanpV(a).

Suppose fiq is a product measure on ([[,.qJs)", with q = (qj ci€nl,j€[legs). Forse S
the s-marginal of g is the product measure pp, on J with (ps);- = qu for all i € [n], j € Js,
where the sum is over all j with j; = j.

We say that piq has marginals (up, : s € S). We say that pq is k-bounded if qjﬁi € [k,1— k] for all
J € lses Js- Note that if iq is k-bounded then so are its marginals.

Remark 1.14. We will often simply write q]i»l,j2 for qéjl jn) €te.

A rough statement of our probabilistic forbidden intersection theorem (Theorem 1.17 below) is
that if A has ‘large measure’ then the set of w-intersections in A has ‘large measure’. We will
combine this with an equivalence of measures discussed in the next subsection to deduce our main
theorem. First will highlight two special cases of Theorem 1.17 that have independent interest. The
first is the following result, which ignores the intersection conditions, and is only concerned with
the relationship between the measures of A and A x A; it is a new form of correlation inequality
(see Theorem 7.1 for a more general statement that applies to several families defined over general
alphabets).

Theorem 1.15. Let 0 < n™1,§ < Kk,e < 1 and pq be a r-bounded product measure on ({0,1} x
{0,1})™ with both marginals pp. Suppose A C {0,1}" with pp(A) > (1 —6)". Then pg(A x A) >
(I—¢e)™

Next we consider the problem of finding V-intersections that are close to w, which is also natural,
and somewhat easier than finding V-intersections that are (exactly) w. We require some notation.
For 7 > 0 let Br(w,r) = {w' € ZP : |[w — w/||[g < r}. For A C P[n] and L C ZP let (A x A)Y" =
{(A,B)e Ax A:V7(A,B) € L}.

Theorem 1.16. Let 0 <n 1,6 < ( € k,e < D71 and R € ZP. Suppose that
i. fiq 15 @ K-bounded product measure on ({0,1} x {0,1})™ with both marginals pp,
ii. V = (vi:i € [n]) is an R-bounded array in 7.7,
iii. Vr(uq) =w € RP and L := Br(w,(n).
Then any A C {0, 1} with jip(A) > (1 — 0)" satisfies pg((Ax A)J") > (1 —¢€)".

Theorem 1.16 naturally fits into the wide literature on forbidden L-intersections in extremal set
theory (see [2], [4] or [19]). Here one aims to understand how large certain families of sets can
be if all intersections between elements of A are restricted to lie in some set L. For example, the
Erdés-Ko-Rado theorem [9] can be viewed as an Lo-intersection theorem for families A C (), where
Ly ={l e N:1 <[ < k}. Similarly, Katona’s t-intersection theorem [22] can be viewed as an
L>-intersection theorem for families A C P[n|, where L>; = {l € N : [ > t}. We also note that
when D = 1 the set L = Br(w,(n) in Theorem 1.16 is simply an interval, and this case naturally
arose in Frankl and Rodl’s original proof of Theorem 1.1.

Now we state our probabilistic forbidden intersection theorem: if V is robustly generating then
Theorem 1.16 can be upgraded to find fixed V-intersections.

Theorem 1.17. Let 0 < n 1,6 < ( € K,7,e < D71, C~ 1 k™! and R € ZP with maxq Rg < n®.
Suppose that



i. fiq 15 @ K-bounded product measure on ({0,1} x {0,1})™ with both marginals pip,
ii. V = (vi:i € [n]) is R-bounded and ~y-robustly (R, k)-generating in 77,
iii. w € ZP with ||w — Va(ug)|lr < ¢n.
Then any A C {0,1}" with pup(A) > (1 —0)" satisfies pq((A x A)¥) > (1 —e)™.

1.3 Maximum entropy and large deviations

Next we will discuss an equivalence of measures that will later combine with Theorem 1.17 to yield
Theorem 1.11. Here we are guided by the maximum entropy principle (proposed by Jaynes [18]
in the context of Statistical Mechanics) which suggests considering the distribution with maximum
entropy? subject to the constraints of our problem, as defined in the following lemma (the proof is
easy and appears in Lemma 2.6 in Section 2).

Lemma 1.18. Suppose V = (v;) is an (n,J)-array in ZP and w € ZP. Let MY, be the set of

probability measures pn on J" such that V(u) = w. Then, provided ./\/ll/v is non-empty, there is a
unique distribution pk, € MY, with H(uk,) = max, e vy H(p), and pY is a product measure [py O

J", where Zie[n]JeJ(pw)]VJ =w.

We will show that ;% is equivalent to the uniform measure on (J™)Y, in the sense of exponential
contiguity, defined as follows. (It is reminiscent of, but distinct from, the more well-known theory of
contiguity, see [17, Section 9.6].)

Definition 1.19. Let u = (upn)nen and g/ = (), )nen, where p, and p, are probability measures on
a finite set €2, for all n € N. Let F = (F,)nen where each F,, is a set of subsets of €0,,.

We say that i exponentially dominates p relative to F, and write u <z g/, if for n™! < § <
e < 1and 4, € F, with p,(A,) > (1 — )™ we have ul (A,) > (1 —e)”. We say that p and ' are
exponentially contiguous relative to F, and write u ~z p’ if p < p/ and p’ <r p.

If A = (Ap)nen with each A,, C Q,, then we write u Sa ¢/ if p Sr 1/, where F, is the set of all
subsets of A,; we define y =~ p' similarly.

Note that <r is a partial order and ~ is an equivalence relation.

The following result establishes the required equivalence of measures under the same hypotheses
as in the previous subsection. It can be regarded as a large deviation principle for conditioning
x € J" on the event V(x) = w (see [8] for an overview of this area).

Theorem 1.20. Let 0 < n~! < v,k k™1, D71, C~! <1 and R € RP with maxy Rg < n. Suppose
VY = (V;) is an R-bounded y-robustly (R, k)-generating (n, J)-array in ZP, and w € ZP such that
ppy 18 k-bounded. Let v be the uniform distribution on A, = (JM)Y. Then PpY A V.

To apply Theorem 1.20 under combinatorial conditions, we will use the following lemma which
shows that ppy is k-bounded under our general position condition on V. (See also Section 4 for a
more general result based on VC-dimension that applies to larger alphabets.)

Lemma 1.21. Let 0 < n ! < k € 7,7 < a, D71, Suppose V = (v*) is an R-bounded ~'-robustly
(v, R)-generic (n,{0,1})-array in ZP and |({0,1})%| > (1 + a)?. Then pY, is k-bounded.

Alexander Barvinok remarked (personal communication) that similar results to Theorem 1.20
and Lemma 1.21 were obtained by Barvinok and Hartigan in [3]. Theorem 3 of [3] gives stronger

2The entropy of a distribution p defined on a finite set X is H(u) = Y owex —H(x)logy pu(zx).



bounds on [({0,1}")X| where applicable, but their assumptions are very different to ours (they
assume bounds for quadratic forms of certain inertia tensors), and they also require that the vectors
all operate at the ‘same scale’, so their results do not apply to the Kalai vectors. Although our bounds
are weaker, our proofs are considerably shorter, and furthermore, stronger bounds here would not
give any improvements elsewhere in our paper, as they account for a term subexponential in n, while
our working tolerance is up to a term exponential in n.

1.4 Supersaturation

We now give a brief overview of the strategy for combining the results of the previous two subsections
to prove supersaturation, and also indicate the conditions that determine which case of Theorem 1.11
holds. Under the set up of Theorem 1.11, a telegraphic summary of the argument is:

Theorem 1.20

LA > (1 — 8)" ]| TR0 (A) > (1 o) e T

pa((Ax A)E) = (1 —e)",
where f14 is chosen to optimise the lower bound on |(A x A)X| implied by the final inequality.

The best possible supersaturation bound (case i of Theorem 1.11) arises when Theorem 1.17 is
applicable with 114 equal to the maximum entropy measure pg that represents (X x X )1,{,”: this case
holds when pg is k-bounded and has marginals pp close to pp = ppy.

Case ii of Theorem 1.11 holds if yig is k-bounded but pg is not close to pp: then ug is concentrated
on a small subset By, of X', which is responsible for almost all w-intersections in X'

Lastly, case #ii of Theorem 1.11 holds if ug is not x-bounded. The key to understanding this case
is the well-known [31] Vapnik-Chervonenkis dimension, defined as follows.

Definition 1.22. We say that A C J" shatters X C [n] if for any (j, : # € X) € JX thereisac A
with ay = j, for all x € X. The VC-dimension dimy¢(.A) of A is the largest size of a subset of [n]
shattered by A.

To see why it is natural to consider the VC-dimension, consider the problem of finding an inter-
section of size n/3 among subsets of [n] of size 2n/3. The conditions of the Frankl-Rodl theorem

are not satisfied with these parameters, and indeed the conclusion that every family from (221/]3)

of density (1 — o(1))™ contains an n/3 intersection is not true: take A = {4 € (221/]3) : 1 ¢ A}

Considering (2%}3) Xn/3 (QZL/]?)) as a subset of ({0,1} x{0,1})™, we see that no coordinate can take the
value (0,0), so there is not even a shattered set of size 1! Modifying this example in the obvious way
we see that it is natural to assume a bound that is linear in n. We also note that this example shows
that the ‘Frankl-Ro6dl analogue’ of Conjecture 1.2 is not true (i.e. although ([Z]) Xy ([Z]) is exponen-

tially large, there are exponentially dense subsets of ([Z]) with no ¢ intersections) and hints towards
a counterexample for Kalai’s conjecture. More generally, we will prove that x-boundedness of (i is
roughly equivalent to the VC-dimension of (X x X)X being large as a subset of ({0,1} x {0,1})"
(see Lemma 4.8). Case iii of Theorem 1.11 will apply when (X x X)¥" has low VC-dimension.

The above outline also gives some indication of how the values in Theorem 1.3 arise. As described
above, the supersaturation conclusion desired by Conjecture 1.2 (case i of Theorem 1.11) needs yg
to have marginals pip close to pp := ppy. We can describe pg and pp explicitly using Lagrange
multipliers: they are Boltzmann distributions (see Lemma 10.1). In general, it is not possible for one
Boltzmann distribution to be a marginal of another, which explains why Conjecture 1.2 is generally
false. An analysis of the special conditions under which it is possible gives rise to the characterisation
of I in Theorem 1.3.



The outline also suggests a possible characterisation of the optimal level of supersaturation in
all cases (i.e. including those for which Kalai’s conjecture fails). Any choice of puq satisfying the
hypotheses of Theorem 1.17 with marginal distributions ) gives a lower bound on |(A x A)X"|, and
the optimal such lower bound is obtained by taking such a measure with maximum entropy. Is this
essentially tight? We wil give a positive answer to this question by proving a matching upper bound
in Section 11.

Finally, we remark that our method allows different vectors defining the sizes of intersections
from those defining the sizes of sets in the family, i.e. V'-intersections in ({0,1}")Y; in Section 6.3
we show such an application to give a new proof of a theorem of Frankl and Rodl [11, Theorem 1.15]
on intersection patterns in sequence spaces.

1.5 Organisation of the paper

In the next section we collect some probabilistic methods that will be used throughout the paper.
We prove the large deviation principle (Theorem 1.20) in Section 3. In Section 4 we establish the
connection between VC-dimension and boundedness of maximum entropy measures. Section 5 is
expository: we give two concrete counterexamples to Kalai’s Conjecture 1.2. As mentioned above,
the reader may wish to first read this section and then return to fill in the details. Next we introduce
a more general setting in Section 6, state our most general result (Theorem 6.3), and show that it
implies our probabilistic intersection theorem (Theorem 1.17). In Section 7 we prove a correlation
inequality needed for the proof of Theorem 6.3; as far as we are aware, the inequality is quite unlike
other such inequalities in the literature. We prove Theorem 6.3 in Section 8, and then deduce
our main theorem (1.11) in Section 9. Our corrected form of Kalai’s conjecture (Theorem 1.3) is
proved in Section 10; we also show here in much more generality that supersaturation of the form
conjectured by Kalai is rare. In Section 11 we give a complete characterisation of the optimal level
of supersaturation in terms of a certain optimisation problem for measures. Lastly, in section 12 we
recast our results in terms of ‘exponential continuity’: a notion that arises naturally when comparing
distributions according to exponential contiguity, and may be interpreted in terms of robust statistics
for social choice: this point and several potential directions for future research are addressed in the
concluding remarks.

1.6 Notation

We identify subsets of a set with their characteristic vectors: A C X corresponds to a € {0,1}¥,
where a; = 1 & i € A. The Hamming distance between vectors a and a’ in a product space J" is
d(a,a’) = |{i € [n] : a; # &}}|. Given a set X, we write ()k() ={AC X :|A|l =k}. We write § < ¢
to mean for any & > 0 there exists dg > 0 such that for any § < g the following statement holds.
Statements with more constants are defined similarly. We writea =b+ctomeanb—c<a <b+ec.
Throughout the paper we omit floor and ceiling symbols where they do not affect the argument. All
vectors appear in boldface.

2 Probabilistic methods

In this section we gather several probabilistic methods that will be used throughout the paper:
concentration inequalities, entropy, an application of Dependent Random Choice to the independence
number of product graphs, and an alternative characterisation of exponential contiguity.



2.1 Concentration inequalities
We start with the well-known Chernoff bound (see e.g. [1, Appendix Al).

Lemma 2.1 (Chernoff’s inequality). Suppose t > 0 and X := Zz‘e[n] X;, where Xy,...,X,, are
independent random wvariables with |X; — EX;| < a; for all i € [n]. Then P(|X — EX| > t) <
26_t2/(22?:1 a?)

An easy consequence is the following concentration inequality for random sums of vectors.

Lemma 2.2. Suppose jp is a product measure on J", and V = (V;) is an R-bounded (n,J)-array
in ZP. Let X = V(a) with a ~ pp and t > 0. Then P(| X —EX|gr >t) < 2Dt /8

Proof. For each d € D, we have Xy = Zie[n] Xa,i, where Xg,(a) = fuéi 4 are independent random
variables with | X4;| < Ry for all i € [n]. By Chernoff’s inequality we have P(|Xq — EX4| > tRy) <
2e~t*/ 8 5o the lemma follows from a union bound. O

We will also use the following consequence of Azuma’s martingale concentration inequality (see
e.g. [25]). We say that f : J® — R is b-Lipschitz if for any a,a’ € J" differing only in a single
coordinate we have |f(a) — f(a")] <.

Lemma 2.3. Suppose Z = (Z1,...,Zy) is a sequence of independent random variables, and X =
f(Z), where f is b-Lipschitz. Then P(|X —EX| > a) < 2¢9°/2n*,

2.2 Entropy

In this subsection we record some basic properties of entropy (see [7] for an introduction to informa-
tion theory). The entropy of a probability distribution p = (p1,...,ps) is H(p) = — Zie[n] p; logs ;.
The entropy of a random variable X taking values in a finite set S is H(X) = H(p), where
p = (ps : s €8) is the law of X, i.e. ps = P(X = s). When p = (p,1 — p) takes only two
values we write H(p) = H(p) = —plogyp — (1 — p) logy(1 — p).

Entropy is subadditive: if X = (Xi,...,X,) then H(X) < >, H(X;), with equality if and
only if the X; are independent. An equivalent reformulation is the following lemma.

Lemma 2.4. Suppose p is a probability measure on [ ciq)Js with marginals (ps : s € [S]). Then
H(p) < Zse[s} H(ps), with equality if and only if p = Hse[s] [s -

It is easy to deduce Lemma 1.18 from Lemma 2.4. Indeed, consider y € MY with maximum
entropy. Let p} = Pyp(z; = j). Then w = V(p) = Zie[n],jer;V§7 so the product measure fip
is in MY, and H(u) < H(up), with equality if and only if 4 = pp. As MY, is convex, uniqueness
follows from strict concavity of the entropy function, which we will now prove in a stronger form
(see Lemma 2.6 below). It is often convenient to use the notation H(p) = > ;¢ L(pi), where

L(p) = —plogyp = —piggg. Note that L'(p) = —lﬁlggp and L"(p) = —@ < 0, so L is strictly

concave. The following lemma is immediate from these formulae and the mean value form of Taylor’s
theorem: f(a+t) = f(a) + f'(a)t + f"(a +t')t?/2 for some 0 < ¢’ < t.

Lemma 2.5. If |t| < min(p,1 — p) then

i Lp+1) — L(p) = —(1o%2)t £ (p— [t]) 712,

.. 2
ii. Lp+1t)+ L(p—t) = 2L(p) < — 5.
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We deduce the following ‘stability version’ of the uniqueness of the maximum entropy measure,
which quantifies the decrease in entropy in terms of distance from the maximiser.

Lemma 2.6. Suppose jp = p1) and pg € MY. If ||p — p|[1 > on then H(p) < H(p) — 6°n.

Proof. Let p’ = (p + p)/2 and note that uy € MY. By definition of ) we have H(up) < H(up),
so H(pp) — H(pp) = 2H (ppr) — H(pp) — H(pp) = X e (Pi —pi)? > 6%n, by Lemma 2.5 ii and then
Cauchy-Schwarz. O

We conclude this subsection with a perturbation lemma.

Lemma 2.7. Suppose p is a probability distribution on X and —logy u(x) > H(u) for some x € X.
Then there is t > 0 such that v = (1 — t)u + t1, has H(v) > H(p).

Proof. For p(z) # 0, for small enough ¢ by Lemma 2.5 ¢ we have
L(v(z)) = L(u(2)) = (v(2) — p(@) L' (u(x)) £ 2u(z) " (v(2) - p(@))?

= - (BRI o e - o),

If y # x and u(y) = 0 then L(v(y)) — L(u(y)) = 0. Therefore, by Lemma 2.5(i), for all y # x we
have

L) ~ L) = (B0 e o), 3)

All combined, this gives

H)~ Hp) = 3 L) - L) = 3 (S8, - (L0820,

2 2
yeX yeX
_(_logap(x)  H(p)
_t(f £ = 70(15))>o,
for small ¢ > 0. The case p(z) = 0 is similar, using L(v(x)) — L(u(x)) = —tlog, t with (3). O

2.3 Dependent Random Choice

We will use the following version of Dependent Random Choice (see [23, Lemma 11] for a proof and
[10] for a comprehensive survey of the method). We write Ng(u,v') := {v € V(G) : wv,v'v € E(GQ)}
for the set of common neighbours of u and v’ in a graph G.

Lemma 2.8. Let t € N and G = (V1, Vo, E) be a bipartite graph with |V;| = N; and |E| = aN1Ns.
Then there is U C Vi with |U| > a'!Ny/2 such that |Ng(u,u')| > aNfl/tNg for all u,v' € U.

The following is an immediate consequence of Lemma 2.8, applied with ¢ = [2/ce].

Lemma 2.9. Let 0 < N! < § < ¢,¢ < 1. Suppose G = (V1,Va, E) is a bipartite graph with
each |Vi| = Nj, where N < Nf < Ny < Nll/c and e(G) > <N1N2)175_ Then there is U C V1 with
|U| > N{~¢ such that |Ng(u,u')| > Ny~ for all u,u’ € U.

We say that S C V(G) is independent if it contains no edges of G. The independence number
a(@) of G is the maximum size of an independent set in G. Given graphs Gi,...,Gk, we write
G x -+ X Gy, for the graph on vertex set V(G1) x - -+ x V(Gj), in which vertices (uq,--- ,ug) and
(v1,--+ ,vg) are joined by an edge if uw;v; € E(G;) for all i € [k].

11



Lemma 2.10. Let 0 < N"' < d < e,c <1 and N < Nf < Ny < Nll/c. Suppose for i = 1,2 we
have graphs G; on Vi with |Vi| = N; and o(G;) < N} 7. Then a(Gy x Ga) < (NyNo) 2.

Proof. Suppose E C V; xVa with |E| > (N1N3)'~?. Consider the bipartite graph G = (Vi, Va, E). Let
U be as in Lemma 2.9. As |U| > «(G1), there is an edge ujug of Gy in U. As |Ng(ui,u2)| > a(Ga),
there is an edge vivy of G in Ng(uj,uz). Then (ui,vi)(uz,v2) € E, so E is not independent in
Gl X GQ. O

By repeated application of the previous lemma, we obtain the following corollary.

Lemma 2.11. Let 0 < N '« § < e,c,k P <1 and Ny,..., N, € N with N < N < N; < Nil/C for
all i,j € [k]. Suppose for i € [k] we have graphs G; on V; with |V;| = N; and a(G;) < N}'7¢. Then
a(G1 X o X Gk) < (N1 s Nk)l_é.

2.4 Exponential Contiguity
We conclude this section with an alternative characterisation of exponential contiguity.

Lemma 2.12. p Sa g if and only if forn™! < § < e < 1 and B, = {z € A, : u,(z) <
(1 - 5)"/%(37)} we have :un(Bn) < (1 - 5)n

Proof. Let n™! < § < & < 1. Suppose first that if A, C A,, with u,(A,) > (1—6)" then !, (A,) >
(I —¢)" As p,(Bn) < (1 —¢&)"un(Bn) < (1 —¢)", we cannot have p,(B,) > (1 — )", so we have
tn(Br) < (1 —146)". Conversely, suppose jin(Byp) < (1 —6)" and A, C A, with u,(A,) > (1 —460/2)".
Then i, (An) = py (A \ Bn) = (1 —€)" pn(An \ By) > (1 —2¢)". O

3 Large deviations of fixed sums

In this section we prove Theorem 1.20. Our first lemma will be used to show that the maximum
entropy measure is exponentially dominated by the uniform measure.

Lemma 3.1. Let 0 < n™ ' < n < k,|J|7' < 1. Suppose Up s a k-bounded product measure on J".
Let B={x € J" :logy up(x) & —H(up) £ nn}. Then up(B) < (1 —n®)".
Proof. Consider x ~ pp and X :=logy pp(x) = >_;cp) Xi, where X; =57 ;14— logQ(p;). As pp

is k-bounded, the X; satisfy |X; — E(X;)| < logy(k~!) for all i € [n]. As these random variables are
independent and EX = —H (up), the bound on pup(B) follows from Chernoff’s inequality. O

Our next lemma gives a lower bound for point probabilities of maximum entropy measures, which
implies an upper bound on the number of solutions of V(x) = w.

Lemma 3.2. Suppose V = (v;) is an (n,J)-array in ZP and w € ZP and p, = ppy. - Then for all
x € (J™)Y we have —logy pp(x) < H(up). In particular, logy |(J™)%| < H(up)-

Proof. If some x € (J")% satisfies —log, up(x) > H(up) then Lemma 2.7(i) shows that v =

w
(1 — t)pp + t1x satisfies H(v) > H(up) for some t > 0. However as v € MY, this would contradict
the choice of pl. The second statement now follows as |(J™)% 277 e) < S 1y (x) < 1. O

Our final lemma will give an approximate formula for the number of solutions of V(x) = w (as
mentioned in the introduction, [3, Theorem 3] gives stronger bounds under different hypotheses).
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First we require a small set that efficiently generates ZP, as described by the following definition
and associated lemma, which shows that such a set exists under the mild assumption of polynomial
growth for the coordinate scale vector R (this will also be used later in Theorem 6.3).

Definition 3.3. We say that & C ZP is (k, B,R)-generating if for any v € Z” we have v =
Y ueu Cult, with each ¢y € Z with |ey| < k[|v|r + B.

Lemma 3.4. If n™' < 3,071, D! and maxy Ry < n then there is a (1, 8n,R)-generating R-
bounded U C ZP with |U| < D(C + 2).

Proof. Let U be the set of all u = (uy,...,up) such that for some d € [D] we have ugy = 0 for all
d # d and ug = Ry or ug = |fn|? € [Ry] for some integer ag > 0. O

Lemma 3.5. Let 0 <n ' <K A< 6 < v,k k71, D7 C! <1 and R € RP with maxg Rqg < nC.
Suppose
i. V= (V;) is an R-bounded ~y-robustly (R, k)-generating (n, J)-array in 7P,
ii. lp is a k-bounded product measure on J" with |[EV(x) — w|r < An, where w € ZP.
Then log, |(J™)%| > H(up) — 6n; in particular, (J™)% # (.

Thus, if the mazimum entropy measure pyv s k-bounded then log, |(JMY | = H(ppy) =+ on.

Proof. We first note that the final statement of the lemma follows from the first: the latter gives
the lower bound, as EV(x) = w when x ~ v, and the upper bound follows from Lemma 3.2.

It remains to prove the first statement of the lemma. Let F be the set of x € J" such that there
is x' € (J")¥ with Hamming distance d(x,x’) < §?n. We claim that pp(F) > 1/2.

First we assume the claim and deduce the lower bound. Given x € F there is x’ € (J™)X
with Hamming distance d(x,x’) < 6?n and so |F| < [{(x,x/) € J" x (JV)Y : d(x,x) < §?n}| <
|(J”)yv\(6gn)|J\52”, and as |J]| < k71 < 67! this gives logy |(J™)Y| > log, | F| — 63/?n. Now let
B={x¢e J":logyup(x) > —H(up) + 6>n}. We have up(B) < 1/4 by Lemma 3.1, so up(F \ B) >
pp(F) — pp(B) > 1/4 by the claim. The definition of B gives log, |F\ B| — H (pp) + 621 > logy pip(F \
B) > —2, s0 logy |(J™)X| > logy | F| — 6%/2n > logy | F \ B| — 6%/?n > H(up) — dn, as required.

To prove the claim, we consider x ~ pp and show that with probability at least 1/2 there is
x' € (J")Y with d(x,x’) < §?n. Let By be the event that |V(x) — w|r > 6°n. If By holds, by the
triangle inequality ||V(x) —EV(x)||r > 6n— An > 63n/2 and so P(B;) < 2De*"/2" by Lemma 2.2.
Next, by Lemma 3.4 we can fix some (1,6%n, R)-generating R-bounded U = {uy,...,uy} C ZP"
with M < D(C + 2). Since V is v-robustly (R, k)-generating, by repeatedly applying Definition 1.9,
we can choose pairwise disjoint Sp,; C [n] for each m € [M] and ¢t € [yn/kM] with each |S,,;| < k

and j;, ji € J for all i € S,,; such that u,, = ZieSmt (V;Z — v;'.{). Let Bs be the event that for some

m we have |{t : z; = j; Vi € Spu}| < £Fyn/2kM or |{t : x; = j! Vi € Syu}| < K¥yn/2kM. Then
P(Bs) < e~ by Chernoff’s inequality.

Thus with probability at least 1 — e~® ™ > 1/2 neither By or By holds for x. As U is (1,8%n, R)-
generating and ||V(x) — w|r < §°n, we have V(x) — w = > me[m] CmUm, With each ¢, € Z with
eml < 1-V(x) — w|lr + §°n < 26°n. Now we modify x to obtain x’, where for each m € , 1
lem| < 1-(|V(x) | §n < 26%n. N dify btain x’, where fi h [M], if
¢m > 0 we fix ¢, values of ¢ such that x; = j; for all i € Sy and let = = j! for all such ¢, and if
cm < 0 we fix ¢, values of ¢t such that z; = j/ for all ¢ € S,,; and let « = j; for all such i. Then
V(x') = w, ie x' € (JVY, and d(x,x) < ko mep lem| < 62n. This completes the proof of the
claim, and so of the lemma. ]

We deduce Theorem 1.20, which states that under the hypotheses of the above lemmas, we have
Kp A v, where pip = ppv, and v is the uniform distribution on A, := (JMY.
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Proof of Theorem 1.20. Let 0 < n™! < § < ¢ < v,k, k=1, D71, C~! < 1. Note that v(x) =
|(JM)Y |71 for all x € (J)X, and log, |(J™)%| = H(up) + 6n by Lemma 3.5.

Consider C = {x € A, : pp(x) < (1 —¢e)"v(x)}. If there is x € C then log, pp(x) <
—logy [(JM)%| — en < H(pup), which contradicts Lemma 3.2, so C = (. Thus v Sa pp by Lemma
2.12.

Now consider ¢’ = {x € A, : v(x) < (1 —e)"up(x)}. For any x € C' we have logy pp(x) >
—logy [(J™M)%| + en, so logy up(C') < —e3n < —dn by Lemma 3.1, i.e. up Sa v. O

4 Boundedness, feasibility and universal VC-dimension

In this section we will give several combinatorial characterisations of the boundedness condition on
maximum entropy measures required in our probabilistic intersection theorem. The characterisations
hold under the following ‘multiscale general position’ assumption, which extends Definition 1.10 to
all finite alphabets (by ‘multiscale’ we mean that the parameter v can be arbitrary, which is true of
the Kalai vectors).
Definition 4.1. (robustly generic) Suppose V = (V;) is an (n, J)-array in ZP. Let I € ([g]) and
c=(c':iel)with ¢! € R/ and djesCG=0foralliel

We say that (I,c) is (v, R)-generic for V if all |c;| < ~y71, and writing w? = died cg.vj- and
W = (w}:i € I,d € [D]), we have |det(W)| > 7 [Lse(p) Ra-

We say that V is 7/-robustly (v, R)-generic if for any X C [n] with | X| > «'n there is some (I, c)
with I C X that is (v, R)-generic for V.

We say that a sequence (V,,, Ry,) of (n, J)-arrays and scalings is robustly generic if V,, is v'-robustly
(77, Ry)-generic whenever n=! < v < /.

It will also be convenient to use the following sequence formulation of Definition 1.9.

Definition 4.2. We say that (V,,, R;) is robustly generating if there are v > 0 and k,ny € N such
that V), is y-robustly (R,,, k)-generating for all n > ny.

Next we will define the combinatorial conditions that appear in our characterisation. We recall
the definition of VC-dimension and also define a universal variant that will be important in the proof
of Theorem 1.11 in section 9.

Definition 4.3. We say that A C J" shatters X C [n] if for any (j, : # € X) € JX thereis a € A
with a, = j, for all x € X.

The VC-dimension dimy¢(A) of A is the largest natural k£ such that A shatters some subset of
[n] of size k.

The universal VC-dimension dimgy¢(A) of A is the largest natural k& such that A shatters every
subset of [n] of size k.

Next we give a feasibility condition, which can be informally understood as saying that we can
solve any small perturbation of the equation V,(x) = z,.

Definition 4.4. Let (V,, R, z,) be a sequence of (n,.J)-arrays, scalings and vectors in Z”. We say
(Vn, R, Z,) is A-feasible if there is ng such that for any n > ng, any z/, € ZP with ||/, — z,||r,, < An,

1V,
and any (n’, J)-array V), obtained from V, by deleting at most An co-ordinates, we have (J™)_ # 0.
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Our final property appears to be a substantial weakening of our k-boundedness condition, so it
is quite surprising that it also gives a characterisation.

Definition 4.5. Suppose pp, is a product measure on J". We say that yup is x-dense if there are at
least xn coordinates i € [n] such that p} > for all j € J.

Now we can state the main theorem of this section. The sense of the equivalences in the statement
is that the implied constants are bounded away from zero together. For example, the implication
1t = i means that for any § > 0 there is € > 0 such that if ,u,;):; is 0-dense then ,u,;):f is e-bounded.

Theorem 4.6. Let (V,,R;,) be a robustly generic and robustly generating sequence of (n, J)-arrays
and scalings in ZP, and (z,,) a sequence of vectors in ZP. The following are equivalent:
i. pyr is Q(1)-bounded.
it. pyr is Q(1)-dense.
iti. dimyc((J™)y) = Q(n).
w. dimgye((J)) = Q(n).
v. (Vn, Ry, 2y) is Q(1)-feasible.

The main step in the proof of Theorem 4.6 is Lemma 4.8, which provides the implication iii = 1.
It also implies Lemma 1.21, as for binary vectors the following coarse version of the Sauer-Shelah
theorem shows that linear VC-dimension is equivalent to exponential growth.

Lemma 4.7. [27, 29] For A C {0,1}" we have dimyc(A) = Q(n) < log, |A| = Q(n).

Lemma 4.8. Let 0 < n™! < v < 7,7/ < A < D71 |J|7t. Suppose V = (v;) is an R-bounded

' -robustly (v, R)-generic (n, J)-array in ZP. If dimyc((J™)%) > An then pk is k-bounded.

The proof of Lemma 4.8 is immediate from the next two lemmas, which give the implications
119 = 41 and 44 = ¢ of Theorem 4.6.

Lemma 4.9. Let 0 < n™! <k < A< D7 |J|7L. Suppose V is an (n, J)-array in ZP. Let w € ZP
and p = ph. If dimyc((J™)%) > An then pp is k-dense.
Proof. Fix Z with |Z| > An such that (J")% shatters Z. Suppose for a contradiction that up is

w

not x-dense. Then we have Y C Z with |Y] > [Z|/2 and (jj, : y € Y) € J¥ such that p;’.’, < k for
Y
all y € Y. As (J")X shatters Z, we can choose j € (J")k with j, = Jjy for all y € Y. Note that

w w
pp(G) < kY1 < kA2 50 —logy pp(j) > —(logk)An/2 > |J|n > H(up). By Lemma 2.7 we can find
v=(1-1t)up+tl; € MX with H(v) > H(up). This contradicts the definition of Y. O

Lemma 4.10. Let 0 < n ! < k < 7,7 < A < DY |J|7L. Suppose V = (vé) is an R-bounded

~'-robustly (7y, R)-generic (n,J)-array in ZP. Let p = p%. If up is A-dense then uy, is rk-bounded.

Proof. As pip is A-dense, we can fix Y C [n] with |Y| > An such that pé >Aforalli €Y and j € J.
As V is 4/-robustly (v, R)-generic, we can fix (I,c) with I C Y that is (7, R)-generic for V, i.e. all
il <~ Zje,c; =0 for all i € I, and writing w' = > jed cviand W = (w)):i € I,d € [D]), we
have |det(W)| > [ Lye(p) Ra-

Now we show that jp is K-bounded. For suppose on the contrary that p?/ < k for some i’ € [n]
and j' € J. Fix j” € J such that pg,, > |J|7t. As (w' : i € I) are linearly independent, we
can write v;'./,, - v;/, = Y. biw'. By Cramer’s rule we have b; = det(W) ™! det(W;), where W; is
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the matrix obtained from W by replacing w' with vj.’,, — v;,, As V is R-bounded, we can write
det(W;) = det(A;) [[4ep Ra, where all entries of A; have modulus at most 1, so |det(A4;)| < D! (or
DP/2 by Hadamard’s inequality). Therefore |b;| < D!y~! for all i € I.

Consider a product measure p where for some ¢ > 0 we have p’é- = pé- + tbicé for all © € [
and j € J, p’?, = pé»/, + t, p’é-c, = pg,, —t, and p’;'- = p;- otherwise. Note that Exwupl Zie[n] v;i =
Expip 2 icqn] vi o+ td ierjer bicj»v; + tvé-/, - tvé-/u = Exwpp 2icin) Vi =W, 80 py € MX.

We claim that we can choose ¢ > 0 such that H(up) > H(up). This will contradict the definition
of uk,, showing that yp is k-bounded. To see this, note that H(up) — H(pp) = Eielu{i,}(H(p’i) -
H(p")) and H(p") — H(p') = — died [p;i logz(p;-i) — pé- logg(pz)] for each i € [n]. Also, by Lemma
2.5 i, we have —(p +t)logy(p +t) + plogy p = —(%g%p)t + (p — |t]) 712 = logy(p~1)t & 4t provided
[t| < %min(p, 1—p). If pé.// > 0 then for t < %min (pé./,, 1-— pé./,, (2\J])_1) this gives

H(p'") = H(p") > —tlogy K — 4t — 3tlog, | J| — 2|J|t?,
using pél/ < K, p;:/,/ > |J|7t and |J| > 2. If instead p;/, = 0 then for ¢ < min(k, (2|.J|)~!) we have
H(p'") = H(p") 2 ~tlog, s — 3tlogy |.1| — 2|J|¢%,

Lastly, we have ' '

H(p") — H(p') > 2J|Dy*tlog A — 2X~"|J|(tD!y~?)?
for ¢ € I, as all |bzc§| < D!v~2% and pé € (A, 1 = X). Thus the dominant term in H (pp) — H(pp) as
t — 0is —tlogy k, and so we can choose t > 0 so that H(up) — H(up) > 0, as required. O

Proof of Theorem 4.6. It remains to prove the implications i = v and v = iv (note that iv = iii
is trivial).

Fori = v, let n7! < A < Kk < v,k~1, suppose V, is y-robustly (R, k)-generating, ,u]zjg is
k-bounded, z/, € ZP with ||z/, — z,||r, < An, and V' is obtained from V, by deleting S C [n]
with |S| < An. Then V' is Ry,-bounded and (y/2)-robustly (R, k)-generating. Also, the restriction
ppr of pYr to JNS is k-bounded, and EXNMP,V’(X) = z*, where ||z* — 2] ||r, < 2\n. Therefore

(J["}\S):,"' # () by Lemma 3.5, as required.
For v = iv, let n~! < &, and suppose (V,,, Ry, zy,) is k-feasible. Fix S C [n] with |S| = xn and

y € J%. We need to show that there is x € (J")V» with x|s =y. Let V', V° be obtained from V, by
respectively deleting, retaining the coordinates of S. Let z/, = z, — V'(y). Then ||z, — z,||r,, < kn,
Vi . .
so by definition of x-feasibility we can find x’ € (JI"\%) ». Then x = (x/,y) is as required. O
We conclude this section by noting the following lemma which is immediate from the preceding
proof and Lemma 4.8.

Lemma 4.11. Let 0 < n™! < A < 7,7 < o,D7Y J7L. Suppose V = (v;) 1s an R-bounded,
y-robustly (R, k)-generating, ~'-robustly (v, R)-generic (n,J)-array in ZP.
Let w € ZP with dimyc((J™)X) > an. Then dimyyce((J?)Y) > Mn.

5 Counterexamples to Conjecture 1.2

Theorem 1.3 will precisely describe the conditions under which the conclusion of Conjecture 1.2
is valid, and so show the existence of counterexamples in most cases. However, our proof is not
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constructive, so for expository purposes, in this section we will present two concrete counterexamples,
each illustrating a different ‘breaking point’ of Theorem 1.11. The first will illustrate case ii by
showing that we may have [n]y s X () [P]k,s large, but very few sets in [n]; s are involved in any
(t, w)-intersection. The second will illustrate case éii by showing that we may have almost all sets in
[n]k,s involved in some (¢, w)-intersection, but a large subset of [n]; s containing no (¢, w)-intersections.
The first example also shows that cases i% and ¢ can hold simultaneously.

Counterexample 1: Set ay = 1/2 and ap = 7/16 and 51 = 1/4 and S = 1/16 4 ¢, where { > 0
is small to be selected. Given n € N, take k, s, t and w as in Conjecture 1.2. We will show that
I[n]k,s X (tw) [P]ks| > (14 ¢)" for some constant ¢ > 0 but that there is a set A C [n]y s with
Al > (1 - 0(1))|[n]k75| satisfying A X ;) A = 0.

First we show that |[n]g,s X () [?]r,s| is large. To see this, we start by finding C' C [(1/4+CY?)n]
with (|C|, > (C)) = (t,w). Let Cy = [t] and note that Y (Cp) = (tH) < w. By a sequence of moves,
each removing some i and adding i + 1, we can obtain Cy = [(1/4 + ¢(/*)n —t +1,(1/4 + ¢Y/?)n),
with > (C7) > w. Clearly some intermediate set has (C,> (C)) = (¢t,w). A similar argument gives
aset S C [(1/4+¢Y%)n+1,n] with (|S[,32(S)) = 2(k —t, s — w). Next we note that the maximum
entropy measure pg on {0,1}% with >, ¢ pi(1,4) = (k —t,s — w) is the constant vector (1/2)cs.
By Theorem 1.20 we deduce [{D c S : (|D|,3(D)) = (k —t, s — w)}| = 207eISI = 2(1/2=o(W))n
However, for any D C S with (D, > (D)) = (k—t,s —w) we have (E,> (F)) = (k—t,s —w), where
E=8\D. Taking A=CUD and B=CUEFE we find (4, B) € [n]g,s X(t,uw) 7]k, We have at least
as many (¢, w)-intersections as choices of D, 50 |[n]ks X (¢w) [P]k,s| > 2 (1/2=o(W)n,
w)-intersection are very restricted. Let
)) = (n/2, 16( )). Suppose A and B are

Next we show that sets in [n]y s 1nvolved in any (¢

4, B € [y, with (|4, 5(4)) = (B, (B)) = (an,as (2
(t, w)-intersecting. Let £ :=|AN BN [n/4]|. Then

(G+9)(5)=w= ¥ i= > i ¥ = (1))« (5-0%

i€ANB 1€EANB: 1€ANB:
i<n/4 i>n/4

Rearranging gives (¢ — n/4)?2 — (n? + (1/16 + {)n + £ < 0, so £ > n/4 — /Cn. In particular,
AN [n/4]| > n/4—+/Cn.

We now show that almost all elements of [n]j s do not have this restricted form. Fix constants
Jy € 61 < kK < 1. Let pp be the maximum entropy measure with > p;(1,7) = (k,s). Then
pip is k-bounded by Lemma 1.21. Let & := {A C [n] : [AN[4]| > (1 — £)%2}. Then pp(&) <
(1 —61)"™ by Chernoff’s inequality, so Hn];w N 5} < (1 — 62)"|[n],s| by Theorem 1.20. Choosing
¢ < (k/2)?, all (¢, w)-intersecting pairs from [n]x s lie within &£, which illustrates case ii of Theorem
1.11. Furthermore, [n]; s\ € is a set of size (1 —o(1))|[n]k,s| containing no (¢, w)-intersections, which
illustrates case it of Theorem 1.11.

Counterexample 2: This counterexample is a modification of the family in Section 1.4, related to
VC-dimension. Let a; = ag =2/3 and 81 = B2 = 1/3 4 (, where ¢ > 0 is small. Let n, k, s, t and w
be as in Conjecture 1.2. It is not hard to see that |[n]x s X (¢,w) [?]k,s| = (1 —04(1))"(tk_t’k_?’n_%“) =
(1 —0¢(1))"3™ and almost all elements of [n]; ; are involved in a (¢, w)-intersection. However, for any
set U C [n] with |U| = 2¢n + 1, taking Ay = {A € [n]xs : ANU = 0}, we have [ANB| > ¢+ 1 for
all A, B € Ay and so Ay X () Au = 0. On the other hand, if we select such a set U uniformly at
random we find Ey (| Ay|) > (1 —o0¢(1))"|[n]k,s|. Thus for some U we have |Ay| > (1 —o¢(1))"|[n]k,s]
and Ay X ;) Av = 0.

17



6 The general setting

In this section we state our most general result, Theorem 6.3; we will defer the proof to section
8. This is in fact the main result of the paper in some sense, as we will show in this section that
it implies Theorem 1.17 (in a more general cross-intersection form). However, the hypothesis of
‘transfers’ in Theorem 6.3 appears to be quite strong at first sight, and it will take some work to
show that it follows from the hypotheses of Theorem 1.17 (it is here that the idea of enlarging the
alphabet comes into play). We state our result in the next subsection and then deduce Theorem 1.17
in the following subsection. A second application of Theorem 6.3 is given in subsection 6.3, where
we use it to give a short proof of a theorem of Frankl and R6dl on forbidden intersection patterns.

6.1 Statement of the general theorem

Before stating our theorem, we require the following definition, which describes a situation when for
any vector u in some specific set (which will be given by the following definition), there are many
ways of choosing a coordinate and two particular alterations of its value: one does not change the
associated vector, and the other changes it by u.

Definition 6.1. Suppose V = (Vé,z) is an (n,.J x L)-array in Z”. We say that u is an i-transfer in
V (via (j,7") and (¢,¢")) if there are 7,5’ in J and ¢, ¢ in L with V;',f - V;’,f =u and V;,,e, = V;,e/~
Let U = {uy,...,up} C ZP and P = (P, : m € [M]) for some disjoint subsets P, of [n]. We
say that ) has transfers for (P, U) if u,, is an i-transfer in V for each m € M and i € P,,.
We say that V has y-robust transfers for I/ if it has transfers for (P, i) for some P such that
| Pr| > yn for all m € [M].

Remark 6.2. We note that an (n, [[,.q Js)-array in Z” has transfers for (P, U) if it has them as
an (n,J x L)-array, where J = [[ g Js and L =[], g Js for some " C S.

We can now state our general theorem. (Recall that U exists by Lemma 3.4.)

Theorem 6.3. Let 0 < n ! < § < ( <L e, k,y < DV ML k71, C~Y. Let S and (Js : s € S) be
sets of size at most C, and R = (Ry, ..., Rp) with maxg Ry < n®. Suppose
i. Hq 15 a k-bounded product measure on ([[,cqJs)" with marginals (pp, : s € S),
i. V= (v}, i) is an R-bounded (n,[[;cg Js)-array in VA
iii. U = {uy,...,uy} C ZP is R-bounded and (k, k(n, R)-generating,
w. V has y-robust transfers for U,
v. w € ZP with |w — V(uq)|r < ¢n.
Suppose A C JI for s € S with [T,cq tip, (As) > (1= 8)™. Then pg(([T,es As)e) > (1 — €)™

6.2 Proof of Theorem 1.17

Now we assume Theorem 6.3 and prove Theorem 1.17; in fact we prove the more general cross-
intersection theorem. The strategy is to fuse together suitable co-ordinates and enlarge the alphabet.

Theorem 6.4. Let 0 < n 10 < ( <€ K,7,e < DL.CLk ! and R = (Ry,...,Rp) with
maxy Ry < n®. Suppose

i. g is a k-bounded product measure on ({0,1} x {0,1})"™ with marginals (pp, , fps),

ii. V = (v;:i € [n]) is R-bounded and ~y-robustly (R, k)-generating in Z,
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iii. w € ZP with ||w — Va(ug)||r < ¢n.
Then any A1, Az C {0,1}" with pp, (A1) fipy (A2) > (1 — 8)™ satisfy pq((Ar x A2)%) > (1 — &)™,

Proof. By Lemma 3.4 we can fix some (1,({n,R)-generating R-bounded U4 = {uy,...,uy} C
7P with M < D(C + 2). By repeatedly applying Definition 1.9, we can choose pairwise disjoint
Smjs S C [n] for each m € [M] and j € [yn/kM] with each |Sp;| + |S,;| < k and u, =
Ziesmj v — Zies,’nj v;. We let N = |n/k]| and partition [n] into sets T1,...,Tn each of size k and
a remainder set R with 0 < |R| < k — 1, such that each Sp,; U S;,; is contained in some 7;. We let
P = (P : m € [M]), where each Pp, is the set of i € [N] such that T; contains some Sp,; U S}, ..

We start by reducing to the case R = () and k|n. For Ry C Rwe let A% = {A € A, : ANR = R,}
for s = 1,2. By the pigeonhole principle we can fix (Ry, Ra) so that jip, (A7) up, (AF2) > 272K (1 —
§)" > (1-26)". Let AL = {A;\Rs: A€ A} and V' = (v; : i € [n]\ R). Note that for A; € A’, we
have As U Ry € A with Vh(A41 U Ry, A2 U Re) = VA (A1, Ag) + v/, where v/ = ZieRng v;. Writing
w =w — v/, we have j1q((A1 x A2)X) > kFpuq((A] x A’Q)l}vl”,), so to prove the theorem it suffices to
show piq((A] X A’Q)ljﬁ) > (1—¢/2)".

We can naturally identify {0,1}" with ({0,1}¥)", where A € {0,1}" corresponds to (ANT; :
i € [N]) according to some fixed bijection of T; with [k]. We will apply Theorem 6.3 with N in
place of n, with S = {1,2} and J; = J» = {0,1}*, and A’ (naturally identified) in place of As.
We let W = (wfjhb) be the (N, {0,1}* x {0, 1}*)-array in Z” defined by Wf,hJQ =D jenns Vi for
Ji,J2 C T;. Note that V~(x,y) = W(x,y) for all x,y in {0,1}" (naturally identified).

We also note that W has transfers for (U, P). To see this, consider i € P, with Sp,; U anj c T;.
Let J = Spj, J' = S;,5, L = Sy US],; and L' = ). Then waL, = wiJ/’L/ =0 and wijL - wf],7L =
2ies Vi~ 2ics Vi = Um.

We let g be the corresponding product measure on ({0, 1} x {0,1}*)V, defined by q’gl’jg =
[Lier, q;;_ll 72 for j! and j2 in {0, 1}*, noting that u is k¥-bounded, and let (1p,, f1py,) De its marginals

on ({0,1}*)N. By construction we have iy (x) = pp,(x) and pq(x,y) = pq(x,y) for all x,y in
{0,1}" (naturally identified).

To summarise, after the above reductions, we have iy (A7) pp, (A3) > (1—26)", and it suffices to
show puqr ((A] x AH)W)) > (1—¢/2)". For r ~ pg we have [|[w —EW(r')||r < |[w—EVA(r)||r+2|R| <
2(n, so the theorem follows from Theorem 6.3. U

6.3 Application to a theorem of Frankl and Rodl

In this subsection we give another application of Theorem 6.3, which illustrates an additional flexi-
bility, namely that our method allows different vectors defining the sizes of intersections from those
defining the sizes of sets in the family. We will give a new proof of a theorem of Frankl and Radl [11,
Theorem 1.15] on intersection patterns in sequence spaces. (To align with notation from the rest of
the paper, our notation differs from that of [11].)

Given non-negative integers [y, ...,l; with Y. [; = n, let (l1 [.n”] ls) denote the set of elements x €
[s]" with |{i € [n] : x; = j}| =; for all j € [s]. Given x € (ll,[.n..],ls) and y € (kh[??-},kt)’ the intersection
pattern of x and y is given by an s times ¢ matrix M, with M; j, = |{i € [n] : z; = ji1,y; = Jja}|
for (j1,72) € [s] x [t]. For Ay C (11,[?],ls) and Ay C (kl[n]kt) we let Ay x s Az denote the set of pairs
(x,y) € A1 x Ay with intersection pattern M.

We say that M is an intersection pattern for (l1,...,ls) and (ki,... k) if each >, oy Mj, 5, =
kjy, each 30 o1 Mj, gy = Uja, and 30 e Mjr,jz = n. The following result of Frankl and Rodl
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is the analogue of Theorem 1.1 for intersection patterns.

Theorem 6.5 (Frankl-Rédl). Given e,x > 0 and s,t € N there is 6 > 0 such that the following
holds. Suppose that M is an intersection pattern for (l1,...,ls) and (ki, ..., k) with all Mj, j, > kn.

Let Ay C ( [n]l ) with [Ai] > (1=86)"(, ", ) and As C (k,l["}k) with [As] > (1—-68)"(, " ). Then

lyels Tyeesls yeeeskt 1s-eskt

| Ay xar Ag] = (1 =2)"|(;, ") xm (k;lnkt)’

l17"'7ls

Proof. Fix 0 < § < 0/ < ¢’ < g,k, and let J; = [s]. Let eq,..., e, denote the standard basis for Z?,
and let V| = (v;) denote the (n,Ji)-array, where each v§ = e;. We can naturally identify (h [.7.1.]15)

with (J)Y, where z; = (l1,...,l;) € Z°. The maximum entropy measure fip, = py’ on Ji is then

given by (pl)é = l;j/n for all i € [n] and j € J;. Indeed, as v’ is independent of i € [n], by strict

‘ j
concavity of entropy (Lemma 2.5) so is (p1)j = p1,j, and n(p1,1,...,p1,s) = EVi(x) = (l1,...,ls). As

Hp, is k-bounded we can apply Theorem 1.20 to find pp, ~a, v1, where vy is uniform measure on

(JP)Yr = (l1 ['"”] ls)' Similarly, taking J> = [t], we have a k-bounded product measure pip, on J3, with

Hps A, V2, Where vy is uniform measure on (k1 [”] kt)' Therefore jup, (A;) > (1 —0")" for i = 1,2.

Similarly, we let eq1,...,es_1,—1 denote the standard basis for 7= and let V = (v;-m)
denote the (n,J; x Jo)-array, where Vé’hjz =ej, j, if (j1,J2) € [s — 1] x [t — 1] and O otherwise. We

also let w = 370 e 1xi—1] Mjr,j2€51,j.- Note that for x € (h,.n..,ls) and y € (/ﬂ,?.,kt)’ we have
V(x,y) = w if and only if x and y have intersection pattern M. Therefore (A; x As)% = A; X 3 As.

We will apply Theorem 6.3 to estimate (A; x Az)Y% under the product measure fiq on (Jy X J)"
defined by ¢j, ;, = Mj, j,/n. By hypothesis, piq is x-bounded, with marginals pp, and pp,, and
E(x,y)~ug V(% y) = w. Taking R to be the constant 1 vector in 26D we see that V is R-
bounded, and U = {ej, j,} is (st,0, R)-generating. Lastly, V has 1-robust transfers for i, as for any
(J1,7J2) € [s — 1] x [t — 1] we have v§17j2 — vim =ej, j, and V;Lt — vé}t =0. As pp,(A;) > (1=0)"
for i = 1,2, Theorem 6.3 gives uq((A1 x A2)%) = uq(A1 Xpr A2) > (1 — &)™ The theorem follows

from a final application of Theorem 1.20. O

We wish to emphasize two aspects of the above proof. Firstly, it is crucial that the arrays Vi, Vs
and V can differ. Secondly, the arrays V; are not |.J;|~!-robustly (v, R)-generic for any v > 0 for
© = 1,2, so we cannot apply Lemma 4.8, but we were able to see directly that pup, and pp, are
k-bounded. Thus Theorem 6.3 has useful consequences even for arrays that are not robustly generic.

7 Correlation on product sets

In this section we will prove the following correlation inequality which will be used in the proof of
Theorem 6.3; it can also be interpreted as an exponential contiguity result for product measures (see
Theorem 7.2).

Theorem 7.1. Let 0 < n™',0 < k,e < 1 and piq be a k-bounded product measure on ([T cg Js)"
with marginals (pp, = s € S). Suppose As C J for s € S with [[,cgpp,(As) > (1 —6)". Then

tq([Tses As) > (1 —2)".
Proof of Theorem 7.1. We first consider the case S = {1,2}. Define f : (J1)" — R by

f(x1) = log, (up, (x1)) —log, (uq({x1} x A2)).
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As pp, is a marginal of piq, we have pp, (x1) > pug({x1} x Ag) for all x; € (J1)", and so f(x1) >0
for all x; € (J1)". Note also that f is 2log(x~')-Lipschitz, as pq is £-bounded.

Let M = E, (f). We claim that M < (2§ + a)n < 2an. To see this, we apply a well-known
concentration argument. For I C R, let

B[ = {X1 S (Jl)n : f(Xl) € I}.

By Lemma 2.3, letting o = 46'/21log k™!, we have tpy (Bar—an,M4an)) = 1 — 2e—a’n/Blog*(r ™)) 5
1—(1—-6)"/2. Now let

C = {x1: ng({x1} x A2) = (1 = 6)" pp, (x1)/2}.

Then f(x1) < 26n for x; € C, so C C By a5y However, (1 —9)" < pp,(A2) = pq((J1)" x A2) <
Hp, (CC)(l_d)n/2+MP1 (C)a and so Hp, (B[O,Zén]) > [py (C) > (1_5)71/2 Thus B[O,Q(Sn]ﬂB[M—an,M+an] #
(), which gives M < (26 + a)n < 2an, as claimed.

Now set B = A1 N B[O,3om]' As Hp, (-’41) > (1 - 5)71 and Hp, (B[O,3cm]) > Hp,y (B[M—om,M+an]) >
1—(1—-10)"/2 we have pp, (B) > (1 —6)"/2. Therefore

fiq(Ar x Ag) > Z ta({x1} x Ag) = Z ,Upl(xl)e_f(xl) > Mp1(8)€_3an > (1—e)™

x1E€B x1€EB

This completes the proof in this case.

Now we deduce the general case by induction on |S|. Suppose the theorem is known for |S| = k—1
and we wish to prove it for |S| = k. Fix s € S and let §" = S\ {s}. We view ([[,.qJs)" as
(Js x J)*, where J' = []ycq Jsr. Let pp be the product measure on J™ defined by pp,, (x') =
pq((J1)" x {x'}). Then py is k-bounded and has marginals (jp_,)secs, so by induction hypothesis,
as [[yes tp, (As) > (1 = 0)" we have pp, ([[yeg As) > (1 —0")", where 6 < ' < e.

Also, we can view pq as a product measure on (Js x J')", with marginals pp, and ppr. Since
pps (As) ity ([Tgcgr As) > (1 —0)"(1 = 6")" > (1 —26")", from the |S| = 2 case of the theorem we
obtain jiq([[,cqAs) > (1 —€)", as required. O

Theorem 1.16 is easily deduced from Theorem 7.1.

Proof of Theorem 1.16. Given ¢ > 0, taking D = {r : |[V(r) — EV|r > (n} C ({0,1} x {0,1})™,
by Lemma 2.2 we have ,uq(D) < 2De= /8 < =¢*n/16, However, provided 6,n~! <« (,e,k, by
Theorem 7.1 any A C {0, 1}" with pp(A) > (1 —0)" satisfies pq(A x A) > e=¢*n/16 (1 —£)". Since
(Ax A)ND° = (Ax A" the result follows. O

To conclude this section we give a second application of Theorem 7.1 which will be useful
in Section 12; Theorem 7.1 shows the exponential contiguity of jq and [[,.g pp,, defined by
(ITses ps)(xs : s €S) = [[,cq tp. (xs). Here the subscript II indicates exponential contiguity rela-
tive to product sets, i.e. we apply Definition 1.19 in the case 2,, = ( [Lses Js)n and F =11 = (II,, ) pen,
where II,, = {(Ans:5€5): all A, s € JI'}.

Theorem 7.2. Let 0 < n™! < k < 1 and puq be a k-bounded product measure on (ITseg Js)™ with
marginals (pp, = s € S). Then pq ~u [[,cq tp, -
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Proof. As in the proof of Theorem 7.1, it suffices to consider the case S = [2]. By Theorem 7.1 we
have pip, X pip, St g Conversely, consider A C JP for s € [2]. By the Cauchy-Schwarz inequality,

writing » for ZXIEJ{L7X26J§, we have

P (Al X Az (Z,uq X1, X2) H 1xSeAs> < H Z,uq X1, X2)lx,e4, = H fip, (A

s€[2] s€[2] s€(2]

SO fiq ST Hp; X Hps- .

8 Proof of the general theorem

In this section we prove Theorem 6.3. We start by reducing to the case |S| = 2.
Lemma 8.1. Theorem 6.3 follows from the case |S| = 2.

Proof. First note that if V has «-robust transfers for I/ then it has them as an (n, L1 x Lg)-array,
where each L; = Hsesj Js for some partition (51, S2) of S.

Now let pipg denote the product measure on LY defined by fipg (x1) = piq({x1} x L3); then ppg
is k-bounded. Similarly, we obtain ppg, on Ly that is x-bounded.

Let Ag, = Hsesj Ag for j =1,2. As Hsesj pps (As) > (1 —0)" and § < &', by Theorem 7.1 each
Iips, (As;) = (1 —6")", so the case S = {1,2} of Theorem 6.3 applies to (Ag,,As,). O

Now we will prove a succession of special cases of Theorem 6.3, where the proof of each case
builds on the previous cases, culminating in the proof of the general case. The last of these, Lemma
8.4, shows that Theorem 6.3 holds assuming |S| = 2, J; = J» = {0, 1}, and q;im-z = 1/4 for all i € [n]
and j1,jo € {0,1}; we refer to these assumptions as the uniform binary setting.

Lemma 8.2. Suppose the assumptions of Theorem 6.3 hold in the uniform binary settz’ng and Y has
transfers for (P, U), where P = (P,, : m € [M]) is a partition of [n]. Then (A x A)Y # ).

Proof. The idea of the proof is to reduce the required statement to finding two sets A and B in A
with prescribed values of |[A N BN P,,| for all m € [M], where we identify {0,1}" with subsets of [n];
this will be achieved by the Frankl-R6dl theorem and Dependent Random Choice.

We start by noting that, as u,, is an i-transfer for each i € P,,, we can assume that ViO_V(iJ,O = Uy
and vi,l = Vé’l; indeed, this can be achieved by relabelling elements of J; = J = {0, 1} for each ¢,
which preserves our hypotheses (as we are in the uniform binary setting).

Next we introduce some notation. We denote the marginals of jq by pp = pp, = pp,, i.e. we
have pjy = p{ = § for all i € [n]. For K = (K, : m € [M]) we let BX denote the set of all a € {0,1}"
such that » ,.p a; = Ky, for all m € [M].

We claim that we can fix K with K,, = (3 & %)|P,| for all m € [M] such that pp(ANBK) >
(1—6)". Indeed, by assumption we have ip(A) > (1—8)"/2. Also, for a ~ pp and X, = > icp, & We
have EX,, = 1|Py|, so by Chernoff’s inequality P(|X,, — EX,,| > k|Py|/4) < e~ (51Pml/4)*/21Pm| <
2e~K*1/32 There are at most nM choices of K , 80 by a union bound and the pigeonhole principle
there is some K with all K, = (3£%)|P,,| such that pip,(ANBE) > nM((1=6)"/2—2Me""1m/32) >
(1 —=4)", as claimed.

Now for z = (z,, : m € [M]) with all z,, € ZP we let B%?* denote the set of all a € B
with Y cp Vi . = zm for all m € [M]. As all HVJO s IR < 1 and maxg Rg < nC, there are
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at most (2nCFT1)PM possible values of z, and so by the pigeonhole principle there is z so that
pp(ANBR?) > (1 -6)" /(2nc+1)DM > (1—26)".

We now note for any a and a’ in BX# that V(a,a’) is determined by the values t,, = > iep,, @ity
Indeed, as vi 0 \ 0 = Wy and v1 1= Vo ; we find that

Vaa)= Y Y= (X v+ Viat)

me[M] i€Pm me[M]  i€Pm:a;=0 1€ Py aﬁfl
-y ( Y Wit lamun) YV ) Y ( — ) ).
me[M]  i€Pm:al=0 i€ Pm:al=1 me[M]

Next we claim that there are b,b’ € B%2 such that v* = V(b,b’) and v = EV(r) satisfy
[v*=v[lr < (n,and v* =3 1 (Zm+cmun), where ¢, € Z with cp, = (1£5)| Py for allm € [M].
Indeed, selecting r = (b, b’) ~ 1q and setting X = V(r) we have P(| X —EX||gr > (n) < 2De¢*n/2
by Lemma 2.2. Also, Y, = Y ,cp bib] satisfies EY,, = §|Pn| and P(|Y;, — EYy| > 6|Pp|/4) <
2e~r*1/128 1y Chernoff’s inequality. As pp(BE2) > i (AN BE2) > (1 — 26)", by Theorem 7.1 we
have fiq(B%% x BEZ) > (1 — §')", where § < ¢’ < ¢, so we can choose b and b’ as claimed.

Now we can determine values t,, for m € [M] such that for any a and a’ in A N B5? with
> iep,, @ity = ty, for allm € [M] we have V(a,a’) = w. Indeed, ||[w—v*||r < ||[Ww—V[r+|[v—V[Rr <
2¢n, so as U is (k,k(n,R)-generating, we have w — v* = zme[M} emUy,, with each e, € Z and
lem| < 3kCn. Thus w = 3" - (Zm + (cm + em)um), so we take tp, = K — (cm + &) for all
m € [M]. Note that our above bounds give t,, = (3 & k)| P | & 3k(n.

It remains to show that we can find such a and a’. We consider the graph G = G1 x --- X G
on BX, where each G,, is the graph on ([}z’fn) with A, Al € E(Gy,) < |Am N AL = tm. Recalling
that K, = (3 & %)|P,| we have

max(2Km — | P, 0) + &|Pn| <t = (1/4 £ K)|Pp| £ 3k(n < Ky, — K| Py,

and so a(Gp) < (1 —6)"|V(Gn)| by Theorem 1.1. As |[V(Gn)| > (17,) > |V(Gm)|?" for all

Kyn/2
m' € [M], by Lemma 2.11 we have a(G) < (1 — 26)"|V(G)|. But [AN BE2|/|BE| = pp(AN
BE2) [ (BE) > (1 —26)", so AN BEZ contains an edge of G, as required. O

Lemma 8.3. Theorem 6.3 holds in the uniform binary setting when A; = Ay = A.

Proof. Let P = (P, : m € [M]) with |P,,| = yon for all m € [M] be such that V has transfers
for (P, U), where ¢ < 70 < €. Let By = Uy P and By = [n] \ By, Write FX1-52 for the set
of all a € {0,1}" such that Ziij a; = K; for j = 1,2. As in the proof of Lemma 8.2, we write
Pp = Hp, = fipy, note that p§ = pi = 1/2, and fix K; = (1/2 & k/4)|B;| for j = 1,2 such that
pp (AN FELE2Y > (1 — §)n,

Consider the bipartite graph G' with parts (( 1) ( 2)) where (b, b2) € E(G) < biby € A. By

Lemma 2.9 there is B C (Bi) with [B| > (1—¢")" ‘(Kl) ;

in B we have |[Ng(by,b))| > (1 —48)" (KQ)

We will now find F C B x B with pq(F) > (1 —¢/2)" (also writing uq for its restriction to
({0,1} x {0,1})P1) such that for any (by,b}) € F there are by and b} in Ng(by,b}), such that
V(b1by, b b)) = w. This will suffice to prove the lemma, as then pq((A x A)%) > (1/4)1B2l g (F) >
(1 —¢)™, using v < €.

< ¢, such that for any by, b}
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Let V; = {VJ1 g, 14 € Bj} for j =1,2 and v; = EV;(r), where r ~ pq, so Vi + Vo = v = EV(r).
Let £ be the set of (by, b)) € ({0,1} x {0,1})B1 such that |V1(b1,b]) — Vi|[r > (n. Then uq(€) <
2De¢*"/2 by Lemma 2.2. We choose F = (BxB)\&. By Theorem 7.1 we have piq(BxB) > (1—4")B1l
with ¢/ < ¢" < ( < ¢, 50 pig(F) > (1 —¢/2)™.

It remains to show for fixed (by,b}) € F that there is by and b}, in Ng(by,b}) such that
Va(ba,bh) = w’ := w — Vi (b1, b)). To see this, it suffices to verify the hypotheses of Lemma 8.2,
applied with Ng(b1, b)) in place of A, restricting pq to ({0,1} x {0,1})P2, and with Vs in place of
V. We note that Vs has transfers for the same (P, U), and P = (P, : m € [M]) is a partition of By.
As |w' —vo|r < ||[Ww—V|r+ | Vi(b1,b]) —Vi||r < 2¢n, replacing ¢ by 2¢ we see that all hypotheses
hold, so the proof of the lemma is complete. O

Lemma 8.4. Theorem 6.3 holds in the uniform binary setting.

Proof. Let A} be the set of a; € A; such that there is some as = as(a;) € Az with Hamming
distance d(ai,a2) < 20'n, where § < ¢’ < ¢. We claim that pp, (A}) > (1 —2§)". This follows from
the same concentration argument used in the proof of Theorem 7.1. Indeed, consider r; ~ pup, and
X = d(r1,A2) = ming,e4, d(r1,a2). As X is 1-Lipschitz, by Lemma 2.3 we have P(|X — EX| >
§'n) < e~ (™*/2n This implies EX < §'n, as otherwise since X(r) = 0 for all r € Ay we have
P(|X —EX| > d'n) > P(X = 0) = up,(A2) = pp,(A2) > (1 —0)" > e~ (m)?/2n_ 4 contradiction.
Therefore P(X > 26'n) < e~ (™?/2n s the claim holds.

By the pigeonhole principle, we can fix 7' C [n] with |T'| < 26'n, a partition T = Tp; U T
and A C A} with pp, (AY) > (1 — 36)™ such that for every a; € A} we have T = {i € [n] :
(au,ag(al)i) = (1,0)} and T(],l = {Z € [n] : (ali,ag(al)i) = (0, 1)}

Now let w' = ZieTo,1<V6,1 — Vho) + > ieTo (vio — vi,) and note that for any a; and a) in
Al with V(aj,a)) = w + w’ we have V(a;,az(a))) = w. Note also that [|[w'||g < |T| < 2§'n, so
[w+w —EV(r)|| < ||| + [[w —EV(r)|| < 2¢n. Then puq((A] x A% ) > (1 —¢/2)" by Lemma
8.3, 50 pq((Ar x A2)X) > (1/4)T g (A7 x A ) > (1 — )", as required. O

Proof of Theorem 6.3. As noted earlier, we may assume S = {1,2}. By relabelling, we can also
assume {0,1} C Ji, Jo. As V has y-robust transfers for ¢/, there are disjoint subsets P, of [n], with
| Py > yn, so that u,, is an i-transfer for all i € P,,. By relabelling, we can assume V1 1~ Vo1 = Unm
and VLO = v070 for all i € P,

Next we describe an alternative method to select elements from ([[,.¢ Js)" according to pg. To
begin, we select a random partition [n] = S U T, where each ¢ € [n] appears in S independently
with probability x. Secondly, we randomly select ' = (rj,ry) € (J1)T x (J2)T = (J1 x Jo)T
according to a product measure pg on (Ji x Jo)T', where q’ will be defined below. Lastly, we
select s = (51,52) € {0,1}° x {0,1}® = ({0,1} x {0,1})%, according to the uniform measure v on
({0,1} x {0,1})°. (We will also write v for the uniform measure on {0,1}°.) We obtain a random

element r =r'os € (J; x Jo)", which defines a product measure jiq on (Jy x J2)", as r1,..., 7, are
independent. Now we select q’ above so that q” = q. To determine q’, note that if j, ;' € {O 1} then
(q”) o =r/4A+(1-rK)(q )] ;> and otherwise (q”);’»j, =1-r)(¢ )” Thus we can obtain q” = q by

settlng (q )M (q“ —k/4)/(1 — k) for i€ [n], 7,7 € {0,1} and (¢ )j,j/ = (q)jyj,/(l — k) otherwise.
(Note that k-boundedness of q ensures ¢; ; € [0,1].)

We will analyse this alternative construction of yq in two steps, where in the first step we fix a
pair ™ = (S, 1’) selected above and consider the additional random choice of s = (s1,s3). For j = 1,2
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we let
f;-r:{SjE{O,l}S:I'/OSjE.Aj} and
Fr={s€F[ xF5 :V(r'os) =w}.

Since q” = q, we have jp;(A;) = Ex(v(F])) for j = 1,2 and pq((A x AY) =E,(v(FL)).

In the remainder of the proof we will show that Pr(v(F%L) > (1 —¢/2)") > (1 — &)™, where
§ < §' < (. This will imply the Theorem, as then pq((A; x A2)%) = Ex(v(F)) > (1 —&)"(1 —
e/2)" > (1 —¢)". To achieve this, we will show that for ‘good’ m we can apply Lemma 8.4 to
FT and FJ, with uniform product measure and the array X7 := (v;'.’j, ci € 8,5,7 €{0,1}). As
V(r) = X™(s) + Y7 (r'), we have

Fao = (FT X F)ur s
where w' :=w — Y7 (r') with Y™ = (vﬁ,j, cieT,jeJi,j e ).

First we define some bad events for 7 and show that they are unlikely. Let v = E[X™(s) | 7]
and B; be the event that |[v™ — Ev™||g > ¢n. Then P(B;) < 2De~¢""/8 by Lemma 2.2. Similarly,
the bad event By that | Y™ (r') — EV™(r')||r > (n has P(Bs) < 2De~$""/8. Note that if By U By does
not hold, as [|[w — EV(r)||r < ¢n, we have |[|[vT — w/||g < 3¢n.

The last bad event is that we do not have robust transfers. Let P™ = (P7 : m € [M]), where
P is the set of ¢ € P, such that u,, is an i-transfer in X™. Recalling that u,, is an i-transfer in V
via (0,1) and (0,1) for all ¢ € P,,, we have ¢ € P], whenever i € S, so E|PJ| > kyn. By Chernoff’s
inequality, the bad event B that some |PT| < kyn/2 satisfies P(Bs) < 2Me—+"7"n/8,

Now let G be the good event for 7 that v(FJ)v(F5) > (1-¢")". By Cauchy-Schwarz and Theorem
7.1 we have

Env(FI)V(FF) 2 (Exv(FT x FJ))? = pq(Ar x A2)® > (1 - 8'/4)*",
so (1-P(G))(1=0")"+P(G) > (1-4"/2)", giving P(G) > (1—¢'/2)™ /2. Thus with probability at least

(1—¢&")" the event G\ U3_, B; holds, so we can apply Lemma 8.4 to obtain v(F%) = v((FT x F§)&,) >
(1 —¢/2)", as required to prove the theorem. O

9 Proof of Theorem 1.11

In this section we will prove Theorem 1.11. Let X = ({0,1}")Y, as in the statement of Theorem 1.11.
The proof will split naturally into two pieces according to the VC-dimension of (X x X )l{,ﬂ The
next subsection shows that for high VC-dimension cases i or i of Theorem 1.11 hold; the following
subsection shows that case 7i7 holds in the case of small VC-dimension.

9.1 Large VC-dimension

Here we implement the strategy discussed in subsection 1.4: we consider the maximum entropy
measure /g that represents (X' x X )¥n . and distinguish cases i or ¢ from Theorem 1.11 according to
whether its marginals yi5 are close to pp 1= ppy.

We will study w-intersections between elements in X = ({0,1}")Y via a new collection of vectors
defined in Z3P, motivated by the observation that for any a,a’ € {0,1}" we have a,a’ € X and
Vn(a,a’) = w if and only if

Z [aia}(vi, vi, vi) + ai(1 — aj)(v4,0,0) + (1 — a;)aj(0,v;,0)] = (z,2,w).

i€[n]
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With this in mind, we adopt the following notation throughout this subsection.
Definition 9.1. Let J = {0,1} x {0,1} and let V = (V%) denote the (n, J)-array in 73D with

6371 = (V’iav’iav’i)a ﬂ‘;?[’O = (VZ‘,O,O),

Vo1 = (0,v;,0), Voo =(0,0,0) € Z*7,

where 0 denotes the zero vector in ZP. Let z,w € Z” and X = ({0,1}")}.

We identify (X x X)X with (J")Y, where X := (2,2, w). We define

Hg = ,u)lj and  pp = u;).
We denote the marginals of ;g by pg (both marginals are equal).

Next we show k-boundedness of the above measures under our usual assumptions on V (and
justify the final statement of the above definition).

Lemma 9.2. Let 0 < nl< k<Y <A<e, DN C L k™. Let R € RP with maxy Ry < nC.
and R = (R,R,R) € Z3P. Suppose V = (v; : i € [n]) is an R-bounded, ~'-robustly (v, R)-generic
y-robustly (R, k)-generating array in ZP. Then V is R-bounded, (y'/2)-robustly (v3, R)-generic and
(v/2)-robustly (R, 3k)-generating. Suppose also that dimyc((X x X)X0) > M. Then pp and pig are

k-bounded, both marginals of ug are g, and g € MY.

Proof. The proof of the first statement is ‘definition chasing’ so we omit it. The last statement follows
from symmetry and strict concavity of L(p) (see Lemma 2.5 7). For x-boundedness of i, and g we
apply Lemma 4.8. For pp this is valid as dimy¢(X) > An and V is y-robustly (v, R)-generic. For
Iig this is valid as dimyc((X x X)X1) > An and Vis (7//2)-robustly (7, R)-generic. O

Now we prove the main lemma of this subsection, which distinguishes cases ¢ and ¢ according to
lp—plh:= Zie[n],jeJ \p; - 233|

Lemma 9.3. Let 0 < n7! < 6§ < 61 < 7,7V < A <€ ¢,D71,C7 1 k™! and let R € RP with
maxg Ry < n®. Suppose V = (v; : i € [n]) is an R-bounded, '-robustly (v, R)-generic y-robustly
(R, k)-generating array in ZP. Fix notation as in Definition 9.1 and suppose dimyc((X x X)¥) >
An.
i. Suppose |p—pl|l1 < din. If A C X with |A] > (1-86)"|X]| then |(AxA)X0| > (1—&)"|(XxX)¥|.
ii. Suppose ||p — pll1 > din. Then there is Byyy C X with |Bpyy| < (1 —0)"|X| and

(X X X0\ (Brun X Buhw'| < (1= 6)"[(&X x X)0.

Furthermore, if B C Bpuy with |B] > (1 — 8)"|Bpuu| then |(B x B)X0| > (1 —&)"|(X x X)¥|.
Proof. By Lemma 9.2, yip and pg (and so pp) are x-bounded, where £ < 7,v’. Then by Theorem
1.20, pp ~a v, where v is the uniform distribution on A,, = ({0,1}")) = X. Also by Theorem 1.20,
pig ~as V', where v/ is the uniform distribution on A, = (J™")Y = (X x X)¥0.

Fix constants § < ) € §1 € §o K €1 < K.
Case i: |[p — p|1 < din.

Given A C X with |A| > (1 —0)"|X|, we have pup(A) > (1 —6;)" by Theorem 1.20. As both p
and P are k-bounded, and ||p — pll1 < din, we have pp(A) > (1 — 61)"(k)>™ > (1 — 62)". As the
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hypotheses of Theorem 1.17 hold, we find ,uq((A A)Yn) > (1 — £1)". Theorem 1.20 applied once
again for g gives |(A x A)P] > (1 —e)"[(J")g] = (1 —)"[(X x X).

Case ii: |[p — plj1 > din.

In this case, we let

Bru = {x € X : —log, p(x) = H(ug) £ 0in/2}.

Note that H(pp) < H(pp) — 6fn by Lemma 2.6, which gives |Bfuu| < 9H(up)=0tn/2 < (1 — §)7| x|,
where we use Lemma 3.5 in the second inequality.

Next we show that almost all w-intersections in X" are contained in Bj,;. We require an upper
bound on the size of Y 1= (X x X)% \ (Bfuu X Bruy)w. Note that Y C (X x (X \ Bray)) % U ((X'\
Brui) xX)¥n. As pp is a marginal of pg, this gives pig(Y) < 2pug((X x (X\Bfu”))vﬂ) < 2up(X\Byrun).
However, pg is k-bounded, so Lemma 3.1 gives ug(Y) < 2up(X \ Brau) < (1 —60)". As pg ~ar V'
by Theorem 1.20, this gives || < (1 — 6)"|(X x X)¥"|, as required.

It remains to show supersaturation relative to By,;; the proof is similar to that of case i. As pg is
r-bounded, Lemma 3.5 gives logy |Byuy| > H(pp)—061n. Suppose B C By with |B| > (1—-0)"|Bru|-
Then p5(B) > |B|2~H(ks)~ 8in/2 > (1 — §;)™. Theorem 6.3 gives pg((B x B)%) > (1 —e1)™. A final
application of Theorem 1.20 gives |(B x B)¥| > (1 —)™|(X x X)X0|. O

9.2 Small VC-dimension

To complete the proof of Theorem 1.11, it remains to show the negative result in the case that
(X x X)¥0 has small VC-dimension, i.e. that there is a large subset of X with no w-intersection.

First we use universal VC-dimension (see Definition 4.3) to give a criterion for (X x X)¥" to have
large VC-dimension (which will be used in contrapositive form). We require the following notation.
Given x € X, j € {0,1}, a > 0 let

Si(x) ={i € n]: i:j}7 Vi = (viti€ Sj(x)),

NL(G0) = ({0, 13500, N (x) = ({0, 13009 %
w={xeX N (x)| > (1+0a)" and [Ny (x)] > (1+a)"}.

An important observation is
(x' € X and Vh(x,xX') =w) & (X' =ygoy1 with yo € N? . (x) and y; € Nvlv(x)) .

Lemma 9.4. Let n™! K A< 7,¥ < a < &,D7L,C71 k7! and let R € RP with maxy Ry < n°.
Suppose V = (v; : i € [n]) where each v; € ZP is R-bounded and V is ' -robustly (v, R)-generic and -
robustly (R, k)-generating. Suppose |X| > (14-¢)" and |X&| > |X|/2. Then dimyc((X x X)¥) > An.

Proof. The strategy of the proof is to find a large set S that is shattered by a subset X’ of X,
such that if x € &’ then dimyyc(NY_,(x)) and dimyyco(NL,(x)) are large. Then the definition of
universal VC-dimension will imply that S is shattered by (X x X)¥", as NY_, (x) shatters Sp(x) and
N} (x) shatters Sy(x). First we note by Lemma 1.21 that pp is k-bounded, where o < K < &.

Let &’ be the set of x € X such that V) and VO are (k¥v/2k)-robustly (R, k)-generating. We
claim that |X’| > |X|/4. To see this, note that for any w € ZP with |w|lgr < 1, as V is y-robustly
(R, k)-generating, there are L > yn/k disjoint sets Si,..., Sy, with |Sy| < k for all £ € [L], such that

for all £ € [L] there is a partition Sy = S} USY with ZZES} vi— ZZES? v; =w. Given x € {0,1}" and
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je{0,1}, let Li,(x) ={¢e[L]: S C Sj(x)}. As pp is k-bounded, each EXNHP(\L{;V(X)|) > kFL.
Let By, be the event that either |LY (x)| < k¥L/2 or |LL (x)| < k¥L/2. Also let B be the union of
By, over all w € ZP with ||w||gr < 1. There are at most (2n + 1)°? choices of w, so by Chernoff’s
inequality and a union bound Py, (B) = (1 — ¢x)" for some ¢, > 0. By Theorem 1.20, we deduce
|Xa\ Bl > |X|/4. As X$\ B C X this proves the claim.

Next we claim that if x € X’ then dimpyc (N2, (x)) > An in {0,1}%) and dimgye (N (x)) >
M in {0,151, Indeed, as x € XS we have |S1(x)],[So(x)| > logy(1 + a)n, so V2 and V. are
(7'/1ogs(1 4 a))-robustly (7, R)-generic, and by Lemma 4.7 both N2__ (x) and N (x) have VC-
dimension at least o/n, where 7,7 < o/ < a. Both VY and V. are also clearly R-bounded, and
by definition of X’ these vectors are (k*v/2k)-robustly (R, k)-generating, so the claim follows from
Lemma 4.11.

Now we can implement the strategy outlined at the start of the proof. As |X’/| > |X|/4 >
(14 ¢&)™/4, we have dimy¢(X”) > An by Lemma 4.7. Let S C [n] with |S| > An be shattered by X’.
We will show that S is also shattered by (X x X)% C ({0,1} x {0,1})™. Indeed, suppose that we are
given a partition Uj, j,c10,135j,.4. of S, and wish to find sets x,x’ € & such that Vn(x,x’) = w and
{ieS:a;=ji1,2, =j2} = 5 j,- As X' shatters S, thereisx € X' with {i € S : x; = 1} = 51 gUS1 1.
Furthermore, using the universal VC-dimension of N}, (x) and N_, (x), we have y; € N} (x) with
{i € Sl,O U Sl,l : (yl)i = 1} = S171 and yq € NS?W(X) with {Z € 50,0 U 50,1 : (yz)i = 1} = 5071. Now
x' =ypoyr € X with Vh(x,x') = w and {i € S : z; = ji,2] = ja} = S}, j, for all j1,jo € {0,1}.
Thus S is shattered by (X x X)X, and so dimyc((X x X)¥) > An, as required. O

We conclude with the main result of this subsection, that there is a large subset of X with no
w-intersection.

Lemma 9.5. Letn™ ' < A< 7,7 < e,D7',C~ 1 k™! and let R € RP with maxy Ry < n®. Suppose
V = (v; : i € [n]) where each v; € ZP is R-bounded and V is +'-robustly (v, R)-generic and y-robustly
(R, k)-generating. Suppose z # w and dimyc((X x X)¥) < An. Then there is Bempty C X with
|Bempty’ 2 L(]_ — 6)”|X|J and (Bempty X BEmpty)K,m — (Z)

Proof. We may assume |X| > (14 ¢)" as otherwise we can take Beppty = (0. Take o and € such that
1Y <a<é<Le, DOV ET Let Ay ={xcX: N  (x)|<(14+a)"}and &} = {x € X :
INL(x)] < (1+a)"}. Then |Xy U &7| > |X|/2 by Lemma 9.4. The remainder of the proof splits into
two similar cases according to which & is large; we will give full details for the case j = 1 and then
indicate the necessary modifications for j = 0.

Suppose |X;| > |X|/4. By the pigeonhole principle, we can fix X’ C X} and t € [n] such that
|X'| > |X|/4n and |Si(x)| =t for all x € X'. As (}) > |X'| > (1 +¢)"/4n we have &n <t < n —&n.
Next we can pass to a subset X" C X’ with |X"] > |X’\/2(22n) > (1 — £Y2)"|X| that is ‘well-
separated’; in that the Hamming distance d(x,x’) > 2¢&n for all distinct x,x’ € X”. Indeed, we can
select X" greedily, noting that each element of X" forbids at most > ic(0,.2¢n] (1) < 2(22n) elements
from X”. As |S1(x)| = |S1(x')| = t, this gives |S1(x) \ S1(x')| > &n for all distinct x,x" € X”.

Next we will define Beppry. We randomly select S C [n] with |S| = &n, and let C = {x € X" :
S C Si(x)}. We say that x € C is isolated if there is no x’ € C with Vn(x,x) = w. We let Bepmpry
be the set of isolated x € C. Then by definition we have (Bempty X Bempty)}fvﬁ = 0.

Now we will show that E|Bempiy| > (1—¢)"|X]. AsE(|C|) = (5’;) (g;)_l|2€”|, X7 > (1-€12)|1 x|
and £ < ¢, it suffices to show P(x is isolated | x € C) > 1/2 for all x € X’. To see this, we condition
on x € C and note that S is equally likely to be any subset of S1(x) of size £én. Consider any x' € X"

with Vn(x,x’) = w. Note that x # x’ since V(x,x’) = z # w, and so S1(x) # S1(x’) as both sets
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have size t. Furthermore y := x/[g, (x) € Ny, (x), we have [S1(x)\ S1(y)| > &n by definition of X", and

x' €C& S C Si(y). For fixed y we have P(S c Si(y) < (* gfl”) (Jn)_1 < (1 — &) By definition of
X; we have a union bound over at most (1 + )" choices of y € NJ(x), so as a < &, the probability
that x is not isolated given x € C is o(1), so at most 1/2, as required.

Similarly, if |Xp| > |X|/4, we define X’ and X” in the same way for X, and let C = {x € X" :
S C Sp(x)}. We use the same definition of Bepypey as before, and bound the probability that x is not
isolated given x € C by taking a union bound over at most (14«)" choices of y := x'|g,(x) € NY_ L (x).
The remaining details of this case are the same, so we omit them. O

9.3 Proof of Theorem 1.11

Proof of Theorem 1.11. Take X with v1,v] < A < 72,7%. If dimyc((X x X)X) > An, then we can
apply Lemma 9.3 with v = 77 and 7/ = 7] to obtain case i or ii of Theorem 1.11. On the other
hand, if dimyc((X x X)¥) < An then we apply Lemma 9.5 with 4 = 75 and v/ = v} to obtain case
119 of Theorem 1.11. g

10 Solution of Kalai’s Conjecture

In this section we prove Theorem 1.3, which is our solution to Kalai’s Conjecture 1.2. We give the
proof in the first subsection, then generalise it in the following subsection to show that supersaturation
of the type conjectured by Kalai is quite rare.

10.1 Proof of Theorem 1.3

As described in subsection 1.4, the supersaturation conclusion desired by Conjecture 1.2 (case i of
Theorem 1.11) needs the maximum entropy measure pg that represents (X' x X )Y to have marginals
pp close to pp := pyy. Recall that in Definition 9.1 we constructed g as ,u)y(, where V is a certain
(n,{0,1} x {0, 1})-array in Z*" and X := (2,2, w). In this subsection we work with the Kalai vectors
V = (Vi)igln) With v; = (1,i), so D = 2. In the notation of Conjecture 1.2 we have z = (k, s) and
w = (t,w). Sometimes we will indicate the dependence on n as a subscript in our notation, e.g.
writing z, = (kn,sn) = (laan], [az2(})]). Our proof will use the following concrete description of
the maximum entropy measures as Boltzmann distributions.

Lemma 10.1. Let V = (v;) be an (n,J)-array in ZP and z € ZP. Suppose p= pY has all pz- # 0.
Then there is X € (RP)7 such that all pé =77t Vi, where Z; = > jer NV
Proof. By the theory of Lagrange multipliers, p is a stationary point of

L(p,\,X') = H(p)log2 + ZZ)\]d<Zp] zd)+Z)\;(1—Zp§->.

de[D] jeJ i€[n] i€[n] jeJ
Thus 0= -1 -\, — log(pé-) + 2 aep] Aj,d(vj)d for each ¢ and j, which gives the stated formula. O

When p = p) and Hg = ,ug are k-bounded we can describe them explicitly using Lemma 10.1.
For p we obtain A = (A1, \2) € R? such that p = p) is given by pi = eMHr20/n) (1 4 ehitAe(i/n))—1
(it is convenient to rescale, using A2/n in place of A2). To determine whether p is close to p, it will
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be more convenient to pass to a limit problem in which closeness is replaced by equality. With this
in mind, we write

Pt = @))% = fali/n), where fa(z) = A2 (1 4 M)~ (4)

Similarly, Lemma 10.1 gives 7 = (71, 7}, m2, ) € R* (using the symmetry between (0, 1) and (1,0))
% (n)yi

such that pg = pY is given by c};j, = (an ")}y == g7 ;(i/n), where

gbo(@) = Zn(x) ™, g (@) = gTp(x) = €™ F™ Zp(2) 7,

gr1(z) = €Mt 7 ()7L, with Zp(z) = 1+ 2e™+72% 4 emi+me, (5)

The limit marginal problem is to characterise A and 7 such that fx(z) = g7 (x) + g7 (2).
Next we formulate the constraints on A and 7 defined by the parameters oy, as, 51, B2 of Conjec-

ture 1.2, namely 3, pi(1,1) = (k,s) = (a1n,az(})) and > icln] cﬁ,l(l,i) = (t,w) = (Bin, B2(3)).
The limit versions of these constraints are h(A) = a = (a1, a2) and h*(w) = B = (B1, f2), where

1 1
h(A) = /0 (1,20)fa(z)dz  and  h*(m) = /0 (1, 22)g7 (2)da. (6)

The following lemma shows that we can think of A as a reparameterisation of a, and that large finite
instances of [n]y s are well-approximated by the limit. Recall that a homeomorphism is a continuous
bijection with a continuous inverse.

Lemma 10.2.

i. his a homeomorphism between R? and A.

ii. For o € A and large n we have p," = pp, for some p = p(;;l) where A — X\ = hHa).
Proof. We start by noting that h is continuous. Next we claim that h(A) € A for all A € R%. To
see this, note that 0 < fx(z) < 1 for all z € [0,1]. Then given o = fol fa(x)dx, we can bound
ap = fol 2z fa(z)dz below by fol 2x1 4ydz = of and above by fol 2011 gy 1jdz = 201 — af, so
(a1, a2) € A, as claimed.

Next we claim that the principal minors of the Jacobian of h are positive; this gives injectivity
of h by the Gale-Nikaido theorem [14], and also continuity of A~! by the Inverse Function Theorem.
The Jacobian of A is

! T
<§Ealc; 221{((332))) , where I(g) :/0 g(x)<1_|_f2)§ﬂ2/\zx)d$

All entries are positive as fy(z) is positive. The determinant 2(1(1)I(x?) — I(z)?) is positive by the
Cauchy-Schwarz inequality. Thus the claim holds.

It remains to prove statement (ii) of the lemma. Fix (a1,a2) € A. We claim that |[n]g, .| >
(14 7)" for n7! < v < aj1,as. To see this, we fix v < ( < 6 < aj,a2 and construct a 6-
bounded measure yp on {0,1}° for some S C [n] such that >, ¢pi(1,i) = (kn,sn) £ ((n,n?);
the claim then follows by Lemma 3.5. We let S = [a — 0k,,a + k, + 0k,], for some a € [n]
such that Zf:f_’;lz = s, £n; as o < ag < 2a; — a2 we have S C [n] for small §. Note that
aon? = 25,+0(n) = kn(a+kn/2)+0(n). Welet p; = (1+26) "' fori € S. Then Y ,cqpi = kn+0(1)
and ), g it = s, + O(n), as required to prove the claim.
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Now by Lemma 1.21, p;): is k-bounded, where n~! < k < 7, so Lemma 10.1 gives P, = pg‘n(l).

for some A™. By x-boundedness, x/2 < (Py)t/(Py)h = AN (i) < 2k~ ! for all i € [n], so
A e [—C, C)2, where n~! < C~! < k. Then ()\(")) has a convergent subsequence by compactness
of [-C, C]%. Furthermore, any convergent subsequence of A has a limit A that satisfies h(A) = a,
so is uniquely determined by injectivity of A. O

Next we show a limit theorem for the maximum entropy measures for (¢, w)-intersections which
is somewhat analogous that in Lemma 10.2 i for the maximum entropy measures for [n] s.

Lemma 10.3. Suppose that g = (a1, a2, B1,52) € [0,1]* with (a1,0) € A. Write P = ,ug:
Then either

i. there is (j,7') € {0,1}2 such that minie[n}((}(”))z- =0, or
(n)

71-(”)’
Furthermore, the following are equivalent to case ii:

i. for large n we have g™ = q where 7™ converges to some w € R,
i. there is k > 0 such that pgm) is k-bounded for large n,
ii. there is A > 0 such that dimyc([n]ks X (¢w) [P]k,s) > An for large n.

Proof. We will suppose that case (i) does not apply and show that case (ii) holds. As (i) does not
hold there is &’ > 0 and a subsequence (1, ), such that each Penm) 18 k'-bounded. By Lemma 10.1,

we have 7(") ¢ R* so that q("m) = qgﬁ’;ﬁo and by &’-boundedness each 7w("m) € [~C, C]* for some

C = C(k') > 0. We can pass to a convergent subsequence by compactness and so we can assume
w(m) 5 e R, relabelling if necessary.
Next we make some observations on the functions g7, (x) defined in (5). We note for each

J,j' €{0,1} that (', z) — g;';,(x) defines a function on [—C,C]* x [0, 1] that is continuous, and so

uniformly continuous. As 7™ — 7 we deduce that g}'§7m) converges uniformly to g]’-'j, on [0,1],

and so (q(n));’y — (qS:L));J/ = g;fj, (’L/TL) satisfies

max @))% — (g™ | — 0 as m — oo (7)
Also, as agf(’,’;i) is k’-bounded,

ff/ < <"'(n7n) )\_I'nmj _ ﬂ'(nm)

D (nm) .’ =9 (.f) + 0(1) — g;sz(x) as m — o9,

using continuity and 7w("m) — 7, so 97 (x) > &' for all x € [0,1]. We also claim that

1 1 1
/ (1,2x)gi1d$ = (p1,82) and / (1, 2:c)g‘1":0dx = (a1 — B, 00 — Po) = / (1, Zx)ggfldx. (8)
0 0 0

To see this, we use ]7n(ua(n>) =X, = (aan, a2(5), can, az(y), Bin, B2(3)) £ 1. For example, for the
first coordinate in (8), as ZZ((}("W))’U = Bin+1, by (7) we have 8 +o(1) = 23, 971(i/n) =
01 g7 1(w)dx + o(1). The other coordinates are similar, so (8) holds.
Now we claim that p1g(m) is K-bounded with n~! <« k < Kk'. To see this, take n™! < A < k so that
Vi (bgem) —Xnllg, < An; this is possible by the calculations in the proof of (8). By Lemma 9.2 and
properties (1) and (2) of the Kalai vectors, V,, is (0.05)-robustly (R,,, 21)-generating and ~/2-robustly
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(v3/8, f{n)—ge@rig for any v > 0. To prove the claim, by Theorem 4.6 (implication v = 1) it suffices
to show that (V,,, Ry, X,,) is A-feasible. To see this, consider any x/, € Z” with ||x/, —Xnlg, < Anand

~ WV, .
V!, obtained from V,, by deleting at most An co-ordinates. Then (J™)_ ;" # 0, by Lemma 3.5 applied

n

to the Ry,-bounded 0.04-robustly (R, 21)-generating array V!, and the (x'-bounded) restriction 1’
of figm, as ||V, (1) — x3[lg < 2An. This proves the claim.

7r(nm)

Our next claim is that n_lH(ua<n>) converges to H*(m). To see this, first note that as 97
converges uniformly to g;rj, on [0, 1], as m — oo we have

— (nm) ,. (nm) ,.
”mlH(ﬂawm)) = Eie[nm} Z —ng' (i/nm) logy g}fj/ (i/1m)
J4»3'€{0,1}

1
— H*(m) = Z —/ g7 () logy g7 ;v (z)d.
pqefory 0

By the same calculation with 7r in place of (") we deduce lim,, n ' H (Hgn)) = limy, n, H (gnm)) =
lim,,, nfan(,ua(nm)) = H*(m). On the other hand, Lemma 3.5 gives H (ugm)) + o(n) = \(J”)gz[ >
H(uq(n)) —o(n), so liminf, nle(ua(n)) > H*(m). This estimate applies to any accumulation point
m of {w(™},. Considering any subsequence (n,,) with n,1H (gnm)) — limsup, n~'H (,ua(n)) we
obtain lim inf,, nle(ua(n)) > lim sup,, nle(ua(n)), so the claim holds.

Now we will prove w(™) — 7, using stability of maximum entropy measures. Suppose for con-
tradiction that there are subsequences (") — 7 and w(®m) — 7/ with w # /. By the previous
claim, H*(w) = H*(n'). Take m™! < A3 < A2 < A\ < ||m — #/||; so that the non-zero continu-
ous functions g7, — g}';, satisfy |97, — g}"},Hl > A\ for all 4,5 € {0,1}. As m is large, this gives
Iglem) _g(sm) l1 > A18m/2. Since nilHVn(uqm))—inHﬁn — 0 as n — 0o, we also hav~e Vs (Hgtsm)) =
Xs,, £ A\3Rs,,. As in the proof of Lemma 4.10, we can modify q(*) to obtain q* with Vs, (j1q*) = Xs,,,,
19, —a*[[1 < A28, and (sin) " H (pgr) > H*(7) = Ag/2 = H*(7') = X2/2 > (5m) " H (gsm)) — A2-
But then q©*™), q* € M;im, which gives the required contradiction by Lemma 2.6, since pigm) = ,ugz
for all n, ||q©™) — q*||1 > A\ism/4 and H(q*) > H(G®™)) — Aas,y,.

Lastly the first equivalence is immediate from our proof, and the second from Theorem 4.6. [

Our next lemma explains the characterisation of the set I' that appears in Theorem 1.3: it is
the set of g = (a1, ag, B1, B2) with (a1, az) € A such that the limit marginal problem has a solution.
First we complete the definition of I' by defining the functions S1, 82 : A — R that appear in the
definition of I'y, using the definitions of & in (6) and fy in (4). Suppose & € A with a; # ao and let
A =h"! (). We define

(51(041,042)7@(041,042)):/0 (1,2z) fa(z)?da. 9)

Lemma 10.4. Suppose g = (a1, az,b1,82) € [0,1]* with a = (a1,00) € A. Let A = h™ ().
Then g € T if and only if there is m = (my, ), m2, ) € RY with h*(mw) = (B1,52) and fa(z) =
961(x) + gT1(z). Furthermore, if g € T' there is a unique such m, which we denote ™, and
(n)

TN

108y | [n]k,s X (1.0 [M]ks| = H (pqr) + 0(n), where g’ = q
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Proof. First suppose that there is m with h*(w) = (81, 82) and fa(z) = gf(z) + g71(x). Then we
also have 1 — fx(x) = gfo(z) + g7o(w). Setting y = e* and rearranging, we find the polynomial
equality

eﬂlym + eﬂ'/lyﬂ'é _ e/\ly)\Z + e)\1-i-7T1 y/\2+7f2 (10)
for all y € [1,e]. Thus one of the following two conditions holds:

(a) 79 = Ao and 7T’2 = A9 + 72, (b) Ay = 7T’2 =0.

Suppose that A2 # 0 and so case (a) holds, giving ma = A2 and 75 = 2X2. Equating coefficients
in (10) gives A\; = 7 and 7} = 2)\1, so ™ = 7 = (A1, 2)1, A2, 2)2). Then g971(x) = (em1Fm2r)2(] 4
emMFmT) =2 — £ ()2 so q’iL1 = g71(i/n) = a(i/n)? = ((p()‘n))’i)2, i.e. pg is the product of its two
marginals P Note that o # ae, as h is injective and h(\1,0) = (a1,aq). Thus g € I'y.

Now suppose that Ay = w3 = 0. Then the right hand side of (10) is constant, so 75 = 0,
and so €™ + €™ = M 4+ M Thus o = ag = fa(x) = eM(1+eM)7! and B = B =
97 1(x) = €™ (1 + 2e™ + ¢™)~!. Furthermore, 8 = g71(x) < g71(x) + 931(z) = a1 and 201 — 1 =
2(e™ 4 e™)(1 +2e™ 4 ™)L — 1 < €™ (14 2™ + ™)t = B;. Thus g € I'y.

It remains to consider A2 = 0 and 7 # 0. Then case (b) must hold, so 75, = 0. Equating
coefficients in (10) gives Ay = 7] and Ay + m = 71, s0 Ay = 7] = 0. Then ag = g = fa(z) = 1/2.
We also have gT | (z) = e™+72%(24 2™ +727) =1 = f(2)/2, where T = (71, m2). We deduce (1, f2) =
h*(m) = f01(1,2m)gf71(x)dac = %fol(l,Qx)fﬁ.(m)dx = h(7)/2, so 2(f1, B2) € A. Thus g € I's.

We conclude that if h*(mw) = (81,82) and fa(z) = g7 1(x) + g71(x) then g € I'. Conversely, if
g € I then the analysis of each case above exhibits the unique 7 = 7 satisfying these conditions.
Indeed, if g € 'y we have w = (A1,2A1, A2, 2)X2), if g € I’y we have 7 = (71, 7], 0,0) where g1 =5
and gf 1(z) = aq — p1 (when oy # [ this gives two linear equations for e™ and e™ that have a
unique solution), and if g € I's we have w = (71,0, m2,0), where (71, m2) = h™1 (2831, 20%)

Finally, let ' = q(n,?, and note that pg € Mg, so H(pg) < H(ug) < log, |[n]ks X () [n]k5| +

T
o(n) by Lemma 3.5. For the inequality in the other direction we consider each I'; separately.

If g e I'y welet p’ = pg\"), note that H(ug) = 2H (up) and log, |[n]ks| = H(up) + o(n) by
Lemma 3.5. Then logy |[n]k,s X (140) [P]k,s| < 210gy |[n]ks| = H(pug) + o(n).

n o Hlug) +oln)
= (t,k—t,k—t,n—2k+t) =2"Va .

If g € T's we note that if (A, B) € [n]ks X (tw) [Plk,s, where k = |in], s = 13(3)]. t = [Bin] and
w = |B2(3)], then C := (ANB)U(ANB) € [n]y s, where k' = 281n+ O(1) and s’ = 23 (3) + O(n).
By Lemma 3.5, log, |[ni | = H(ppr) +0(n), where p” = p(;) with A = h™1(281,28,). By the form
of 7 calculated above we have (¢')} | = (¢)bo = 5(P")% and (¢')i 5 = (¢")h1 = 5(P")}, s0

If g € T'y we have Hn]ks X () [n]ks‘ < ’([Z]) X ¢ ([z])

H(pug) =2 —50")ilogy 505 = > (") — ") logs(0")}) = n+ H(ppr).
J:071 ]:071

Given C, there are at most 2" choices for (A, B), so log, Hn]ks X (tw) [n]ks‘ < n+logy |[n)ws| =
H(pg) + o(n). Thus in all cases we have the required bound. O

We conclude this subsection with the solution to Kalai’s conjecture.

Proof of Theorem 1.3. We first fix parameters n! K A K< < < B <<e <K O <«
e,k < g. Suppose g = (a1, 9,31, 52) € [0,1]* with a = (a1,0) € A and let A = h™ ' (). By
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Lemma 10.2 4i, the maximum entropy measure fip, for [n]; s is given by p = p(;a), where [ A=A, <
. In particular, p is k-bounded, since k < (a1, ag).

First we consider case i, i.e. we suppose d(g,I') < and prove that g is (n,d,e)-Kalai. Consider
A C [n]g,s with |A] > (1 —9)"|[n]ks|- Then pp(A) > (1 —01)" by Theorem 1.20, so setting p’ = pf\n)
we have pip (A) > (1-261)" as A=A, < 6. Next we fix g’ € T with ||g’—g|l1 < d(g,T)+6 < 26,
apply Lemma 10.4 to obtain 7 € R%, and let ¢/ = qSﬁ\) Note that pq is k-bounded as k < g, that
Hq has marginals pp and E(A,B)Nuq/(’A N B|,> (AN B)) = (t,w) + 45(n,n?), as ||g’ — g|1 < 2.
As pp(A) > (1 —261)", Theorem 1.17 gives jiq/(A X(10) A) > (1 — d2)". Lemma 3.1 then gives
|A X (4w) Al = (1= d3)r2f @) > (1 - €)™ [n]k,s X (t,w) [M]k,s| by the final part of Lemma 10.4. Thus g
is (n, 0, ¢)-Kalai, completing the proof of i.

n

We now consider case ii, i.e. we suppose d(g,T') > &' and |[n]gs X (¢w) [P]k,s| > (1 —€)™", and

prove that g is not (n,d,e)-Kalai. We adopt the running notation pug = Pgm) = ,ugz introduced
at the beginning of the section. By the equivalences in Lemma 10.3, for large n we either have
(a) @™ is k-bounded, or (b) dimyc([n]s.s X(tw) [Mk,s) < An. We can assume that (b) does not
hold, as here Lemma 9.5 gives A C [n]g,s with [A] > (1 — §)"|[n]x,s| and A x(;.,) A = 0, and so
A Xy Al <1< [(1—2)"[n)k,s X(tw) [?]k,s]. Thus g is not (n,d,e)-Kalai if (b) holds, so we can
assume that (a) holds, i.e. ug is k-bounded for large n. By Lemma 10.1 there is 7 € R* such that
q= qsfn), where as yg is k-bounded we have m € [-C, C]*.

We will now prove that py, is not close to the marginal distribution of g and conclude by applying
Lemma 9.5. Consider the continuous function ¢ : [-C, C]* — R, where

1
o(c) = 11(B1, B2) — b ()1 + /O (@) — g70(2) — g7 (2)]da.

As ||lg — g1 > € for all g’ € T, by Lemma 10.4, the continuity of ¢ and the compactness of
[~C,C)* we have ¢(a) > 6 > 0 for all ¢ € [~C,C]%; in particular, this holds for & = 7. As
E(AB)N%(\A NB,Y (AN B)) = (b1, B2 (g)) +(1,1), we have ||(f1, f2) — h*(m)||1 < 0/2 for large n,
s0 [y [fa(@) = gTo(w) — T (x)|dz > 6/2.

We now translate from the limit setting back to the finite setting. For large n, the previous
inequality implies

On/4 <Y [fa(i/n) = gTo(i/n) — gy (i/n)] = Y105 — B,
i=1 i=1

pg\n) and q = qgf) has marginals pp. As p = p(n) and [|A — A} < 4, we deduce

where p’ = ()
|lp — pll1 > 6n/8. Finally, we apply Lemma 9.3 ii (with 6 = 6/2 and § = ¢) to find By C [n]k,s
so that A = [n|ps \ Bru satisfies |A| > (1 — o(1))|[n]rs] > (1 — 0)"|[n]k,s| and |A Xty Al <

(1 =€) [nlk,s X (t,w) [Mk,s]- Thus g is not (n, ,¢)-Kalai, which completes the proof. O

10.2 Uniqueness in higher dimensions

In this subsection we illustrate how the method used to prove Theorem 1.3 can be applied in a
broader context. Throughout this subsection we work with the following setting.

o Fix a = (ag)4ep) and B = (Ba)aep) in (0,1)".
For all n € N let z,, = (|@gn®|)4e(p) and wy, = (|aan?])aeip)-
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; ))ie[n} are (n, {0,1})-arrays in [n]” such that (V,,2,) is robustly generating
and robustly generic.

e Suppose V,, = (v(n

e Write X, = ({0,1}")}") and suppose that |X,,| > (14 n)™, where n = n(a) > 0 is fixed.

e The arrays V, have a ‘scaling limit’: there is a positive measurable function p : [0,1]” — R
with f[o 10 p(x)dx = 1 such that for any measurable set B C [0, 1]” we have

lim n_l‘{i € [n] :n_lvgn) € B}| = / p(x)dx.
n—oo B

The assumption that (V,,z,) is robustly generic is in fact redundant, as it can be shown to follow
from the scaling limit assumption, but for the sake of brevity we omit this deduction.

We say that (a,3) is (n,0,€)-good if the corresponding V,-intersection problem exhibits ‘full
supersaturation’ analogous to that in Conjecture 1.2, i.e. any A C A&, with |A] > (1 — §)"|A,|
satisfies |(A x A)%)ﬂ’ > (1= e)"[(X, x Xn)‘(;/:)r”!. We will outline the proof of the following
analogue of Theorem 1.3, which shows that if we exclude the case of ‘uniformly random sets’ (i.e.
a# (1 / 2) de] D]) then ‘full supersaturation’ only occurs for one specific value of 3.

Theorem 10.5. In the above setting, if o # (1/2)d€[
that forn ' < § < e < e < a,
i. if [|B—B%|1 <0 then (o, B) is (n,d,e)-good, and
ii. if |8 — B[ > & and |(X, x X) 97| > (1 — )™ then (v, B) is not (n,d,e)-good.

D] then there is B* = B*(a) € (0,1)P such

Similarly to the previous subsection, we wish to determine when ug = ,u,g (with V and X as
in Definition 9.1) has marginals close to up = u) (here we are omitting the subscript n from our
notation). If these measures are s-bounded, Lemma 10.1 gives A € R” such that

ph= R = v /), where f(0) = XX(1+ X7

and 71, ™2 € RP such that 6}07 = (q&’?m);j, = gﬁ,’m (Vgn)/n), where
906" (%) = Zmy ()7 g1 (%) = 9707 (%) = €Ty (%) 7
gﬂ’m (x) =€ Zn | my (x)71, With Zg, 7o (x) = 14217 4 €727,

Again we study the marginal problem for ug and pp via the limit marginal problem of characterising
A and 7 such that fa(x) = gg;"(x) + g7 1" *(x). The constraints are z, = Yiel] pivi(n) and
()

Wn =3 i) a'ilvi . The limit versions are h(A) = o and h* (7, w2) = B, where

)

h(\) :/ xfa(x)p(x)dx and h*(m1,m2) :/ xg1 1™ (x)p(x)dx.
[0,1]7 0,1]7

Our next lemma is analogous to Lemma 10.2.

Lemma 10.6.
i. h is a homeomorphism between RY and h(RP).

ii. For large n we have p," = pp, for some p = pgﬁl) where A — X = o).
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We omit the proof of Lemma 10.6, as it is the same as that of Lemma 10.2, except in one detail
which we will now check, namely that the principal minors of the Jacobian of h are positive. To see
this, note that the Jacobian J has entries

= (A&
Jij = /xe[o,l}D TiT (1 n eA‘x>p(X)dx.

For any y € R we have y? Jy = fxe[O 1D |3, )12 fa(x) (14 er*)"Ip(x)dx. As fx and p are positive,
we have y'Jy > 0 whenever y # 0, as required. We also have the following analogue of Lemma
10.3; again, we omit the similar proof.

Lemma 10.7. Write pgm) = ugz Then either
i. there is (j,j') € {0,1}? such that minie[n}@(”)); =0, 0r

( (n) _(n)

) m",my") converges to some (w1, ms) € R2P.

1. for large n we have q™ =q (n) _(ny» Where
1 72

T
Furthermore, the following are equivalent to case ii:

i. there is k > 0 such that pgm) is k-bounded for large n,
ii. there is A > 0 such that dimyc((X, X Xn)sz,j:)m) > A\n for large n.

The uniqueness in Theorem 10.5 is explained by the following lemma which solves the limit
marginal problem.

Lemma 10.8. Suppose h(X) = a # (1/2)qep). Then there is unique 3* € [0,1]7 such that there is
(1, m2) € RP x RP with h*(mwq,m2) = B* and fr(x) = 901" (%) +91 1™ (x). Furthermore, (1, 2)

is unique, and log, ‘(Xn X Xn)ﬁl’;)” = H(ug) + o(n), where ' = qsfnl),ﬂ'Q.

Proof. As h is injective and h(0) = (1/2)4¢;p] # @, we have A # 0. Rearranging 1 — fx(x) =
900" (%) 4+ g5 17 (x) gives €™ 4 T2 X = e X 4 e(MHNX 50 (a) w1 = A and 7wy = 71 + X, or (b)

71 = 71 + A and A = mwy. However, (b) cannot hold, as A # 0. Thus w; = X and 79 = 27y, so

9117 (x) = fa(x)? and B* = fxE[O 1D X fa(x)?p(x)dx. Uniqueness of (mq,7s) is clear, and the final

estimate follows in the same way as the case g € I'1 of Lemma 10.4. g

Given the above lemmas, the proof of Theorem 10.5 is very similar to that of Theorem 1.3, so
we omit the details.

11 Optimal supersaturation

In this section we characterise the optimal level of supersaturation for V-intersections in terms of a
certain optimisation problem; as outlined in subsection 1.4, this corresponds to the optimal choice of
measure satisfying the hypotheses of Theorem 1.17, i.e. determining H,,q; in the following setting,
which we adopt throughout this section.

elet0<n L i<k<y, <V <e<<a,D7LC7L kL

e Suppose V = (v; : i € [n]) and each v; € ZP is R-bounded, where R € R” with maxy Rq < n°.
e Suppose V is v;-robustly (v;, R)-generic and ~;-robustly (R, k)-generating for i = 1, 2.

o Let z € ZP and X = ({0,1}")Y with |X| > (1 + «)". Write pup := u).
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e Let w € ZP and let Q denote the set of q such that jq is a x-bounded product measure on
({0,1} x {0,1})™ with both marginals pp and Vn(uq) = w.

o Let Hyppp = maxgqeq H(1q) if Q # 0 or Hypge =0 if Q = 0.
The main result of this section is as follows.

Theorem 11.1. In the above setting,

i. if AC X with |A| > (1= 6)"|X| then [(A x AX0| > [(1 —g)2fmas].

i. there is A C X with |A| > (1 —&)"|X| and |(A x A)X0| < (1 + g)n2Hmaz,

We start by giving the short deduction of statement ¢ from Theorem 1.17. The hypotheses of
the latter hold by Lemma 1.21, and Theorem 1.20 gives pp(A) > (1 — ¢')", where § < §' < k. We
can assume Q # ), and Theorem 1.17 applied to q € Q gives uq((A x A)¥) > (1 —¢/2)". Also,
by Lemma 3.1, B := {x € ({0,1} x {0,1})" : logy ptq(x) & —Hmasz £ on} has puq(B) < (1 — )", so
[(A x A)X0| > 2Hmae=0ny, (A x A)¥0\ B) > (1 — g)"2Hmas a5 required.

The remainder of the section will be occupied with the proof of statement ii. A key idea is the
use of ‘empirical measures’, which we will now introduce. First we note by Lemma 1.21 that p is
x’-bounded, where

1,7 < K < 2,7,

We fix a partition of [n] into sets Si,..., Sy so that
lpi —pj| <k and ||v; — vj||lr < K if i, € Sy, for some m € [M].

This can be achieved with M < (27! + 2)P*!. We define the type of A C [n] as k(A) = (|AN
Sil,...,|[AN Sn|). We let k = (K1, ..., kn) be the most common type of sets in X', write

B={Aec X :k(A4) =k},
and define the empirical measure pp by
()% = km/|Sm| for all m € [M],i € Sy,

Note that |B| > |X|/n*. The following lemma shows that p, is a good approximation to the
maximum entropy measure fip.

Lemma 11.2. ||p — p'[j1 < &n.

Proof. Let £ be the set of A C [n] such that some [[ANS,[ =) icq pil > 377 Let k < k1 < ko < K
Then pp(€) < (1 — K1) by Chernoft’s inequality, so | N X| < (1 — k2)"|X| < |B| by Theorem 1.20.
We deduce |km — > icg,, pil < wn/2M for all m € [M], so 3., ciap lhm — Xies,, Pil < kn/2; the
lemma follows. U

We use a similar construction of an empirical measure that represents w-intersections. Let G be
the graph with V(G) = B where AB € E(G) if |AN Bly = w. We define the type of AB € E(G) as
tap = (t1,...,tnm), where t,, = [AN BN Syl for m € [M]. A type t gives rise to a measure piq),
where for i € S,,, we define

q(t)i1 = tm/|Smls a(t)10 = a(t)h1 = (km — tm)/|Sm| and q(t)f0 = (1Sm| = 2k + tm)/|Sml-

Note that each pq() has both marginals i and ||V (pge)) — Wlr < [[p — p'll1 < kn.
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We can assume
H(pg) < logy |[E(G)| —en/2 for all q € Q, (11)

otherwise the proof is complete. We fix a type t occurring at least e(G)/n?M times and set 4 = q(t).
Then H(ug) > logy(e(G)/n*M), so q ¢ Q by (11). The following lemma will show that all empirical
measures associated to edges of G are close to q; we will then use this and q ¢ Q in Lemma 11.5 to
find a large independent set in G, which will complete the proof of Theorem 11.1.

We fix A with 71,7 < A < K.

Lemma 11.3. Suppose CD € E(G) has type t'. Then ||q — q(t')|l1 < An.
For the proof we require the following bound analogous to (11) for a wider class of measures.

Lemma 11.4. Let pug be a A-dense product measure on ({0,1} x {0,1})™ with marginals py and
Vo(pg) = W' with ||w — w'||g < kn. Then H(uq) < logy |E(G)| —en/3.

Proof. We will obtain the required bound from (11) a measure in Q close to j. Recall that p’
is ’-bounded and ||p — p’||i < xn Consider q” that minimises ||q” — q'[|; subject to pq being -
bounded and having marginals pp. For each ¢ we can construct {(g” )3 i} from {(¢' )3 7} by moving
probability mass |[p; — p}| to create the correct marginals, and moving a further mass of at most 2x
while maintaining the same marginals to ensure k-boundedness. Therefore || — q’||1 < 6kn.

Now we will perturb q” to obtain q € Q, i.e. we maintain xk-boundedness and the same marginals
ip, and obtain Va(uq) = w.

As fig is A-dense and k < A there is S C [n] with |S| > An/2 such that (q”);’j, >)\/2forallie S
and j, 7’ € {0,1}. AsV is vj-robustly (71, R)-generic, and A > +{ we can find M > |S|/2D > An/4D
disjoint sets Iy, ..., Iy C S, with |I,| = D and |det(Vy,,)| > 71 Ry --- Rp for all m € [M].

Write Va(uqr) = w”, and note that |w” — w|r < ||q” — q'||i < 6kn. Then u = (w —w")/M
has ||ul|gr < 24DrA"! < \/k. Applying Cramer’s rule as in Lemma 4.8, for each m € [M] we find
coefficients b; with D ;c; b;v; = u and |b;] < \/ED!fyl_l.

Now we obtain q from q” where for each i € Up,canlm we let qil = (q”)’i}l + b, q&l = qi’o =
(q”)il,O — b; and qil = (q”)’m + b;, and q;:’j, = (q”);'-’j, otherwise. By construction q € Q and
ld —alli <lld —q"lli + ld” — a1 < &*/3n. The lemma now follows from (11). O
Proof of Lemma 11.3. Suppose for a contradiction that ||q — q(t")|[1 > An. Consider the inter-
polation q' = Aq(t’) + (1 — A)q. Recall that any pq) has marginals pp and satisfies || Vn(uget)) —
w|lr < Kn, S0 pg has the same properties. Also, as H(ug) > logy(e(G)/n*M) we have H(uq) >
logy |E(G)| — en/3.

As |lg—q(t')|l1 > An we can find S C [n] with |S| > An/2 such that Zj,j’e{o,l} \213], _Q(t,);',j'| >
A/2 for all i € S. As q and q(t') have the same marginals yipy we have |q; ; — q(t)% ;[ > A/8 for all
i € S and j,j/ € {0,1}. For each such i, j,j we deduce (q’);j, > A\?/8. However, this contradicts
Lemma 11.4 (with A2/8 in place of \). O

The following lemma completes the proof of Theorem 11.1.
Lemma 11.5. There is A C X with |A| > (1 —¢)"|X| and (A x A)Y = 0.

Proof. We can assume e(G) > (14¢/2)"|B|, as otherwise by Turén’s theorem ([30], see also [5, IV.2])
G contains an independent set A of order (1+¢/2)7"|B|/2 > (1—¢)"|X|. Aslog, |X| > H(pp)—kn by
Lemma 3.5 and ||p—p'||1 < kn by Lemma 11.2 we deduce H (1ig) > logy(e(G)/n*M) > H(pp)+en/4.
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We have H(ug) = > ;e H(q") and H(pp) = 2 icln] H(p'"), where each H(q') < log, 4 = 2, so there
is T C [n] with |T'| > en/16 such that H(q") > H(p") + ¢/16. As pg has marginals pp we deduce
qQp, =dig>c*forallieT. Let Ty ={ie€T:q; <A and Ty = {i € T : gjy < A\}. By Lemma
11.4 we have |T1| > |T'|/4 or |Tp| > |T'|/4.

Case 1: [Ty| > |T'|/4.

Let B* = {B € B : |[BNTi| > «'|T1]/2}. As p is «’-bounded and |T1| > en/64 we have
pp(B\ B*) < (1 — ¢,)", which by Theorem 1.20 gives |B*| > |B|/2. Let G* = G[B*] denote the
induced subgraph of G with vertex set B*.

We claim that for all AB € E(G*) we have |[A N BN Ti| < 4\?n. Indeed, suppose for a
contradiction that |[A N B NTy| > 4AY2n. Let J be the set of m € [M] with |Ty N S,,| > 2A/2|S,,|.
Then Y,.cs [Sm| > 2AY2n. For all i € J,,c; Sm we have q(tap)i; — ¢, > 222 — X > A/2 by
definition of J and T;. But then ||q — q(tag)|1 > A2 |Sm| > An. This contradicts Lemma
11.3, so the claim holds.

Therefore, for any U C Ty of size u = [4AY/2n], the family Ay := {B € B* : U C B} forms
an independent set in G*. Consider a uniformly random choice of such U. For any B € B*, as
|BNTy| > &'|T1|/2 we have P(B € Ay) > (x'/4)" > (1 — A/3)" as A < /. Therefore Ey|Ay| =
Y pen- P(B € Ay) > (1—¢)"|X|. Thus for some U we obtain an independent set Ay of at least this
size, which completes the proof of Case 1.

Case 2: |Ty| > |T|/4.

The proof of this case is similar to that of Case 1, so we just outline the differences. Now we let
G* = G[B*], where B* = {B € B : |Ty \ B| > «/|Ty|/2}. Similarly to Case 1, we have |B*| > |B|/2,
and there is no edge AB € E(G*) with |Ty \ (AU B)| > 4\'/?n. Thus for any U C Ty with |U| = u,
the family Ay :={B € B*: U N B = ()} is an independent set in G*. Consider a uniformly random
choice of such U. For any B € B*, as |Ty\ B| > #|Ty|/2 we have P(B € Ay) > (k//4)* > (1 —A/3)",
as A < k’. Therefore for some U we obtain an independent set Ay with size at least the expectation,
which is at least (1 —¢)"|X]. O

meJ

12 Exponential continuity

In this section we recast our results using the following notion of continuity that arises naturally
when comparing distributions according to exponential contiguity.

Definition 12.1. Let Q© = (2,)nen and g = (tn)nen, where each p, is a probability measure on
Qy,. Let F = (F,)nen where each F,, is a set of measurable subsets of €2,,. We say that B = (2, F)
is an exponential probability space and write M(B) = M(Q) for the set of such p. We write
v ~ p when v ~x pu. Given exponential probability spaces B = (2, F), B’ = (', F') we say that
[ M(Q2) = M(Q) is exponentially continuous at u € M(Q) if p/ =~ p= f(u') = f(n).

Theorem 12.2. Let 0 <n ' < ( < k,y < D1, M1, C71 k1. Suppose
i. Bs = (s, Fs) are exponential probability spaces with Q,, = JI for s € S,
il. fiq 15 K-bounded product measure on
ii. V= (Vé»l’“_’js) is an (n, [[,eq Js)-array in ZP,
iv. all "V§1,~..,js||R <1, where R = (Ry, ..., Rp) with maxy Rq < n®,
v. U ={uy,...,uy} C ZP is R-bounded and (k,k(n,R)-generating,
vi. V has y-robust transfers for U,
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vii. w € ZP with ||[w — V(uq)|lr < ¢n.
Let B = (0, F) = [l,eq Bs and B' = (', F'), where U, = ()% and F, = {ANQ, : A€ F}. Let

[ be restriction of measure from M(Q) to M(Q'). Then f is exponentially continuous at piy.

Proof. Let uq have marginals (up, : s € S) and suppose g =~ jiq With marginals (up : s € S).
Suppose n7! < § < ( < € < K,7. We want to show for A = [[ g As € F}, that f(uq)(A) >
(1= 0)" = f(ug)(A) > (1 — &) and flug)(A) > (1 — 6" = F(uq)(A) > (1— ). As f(iq)(A) =
pq(A)/ 11q(€2,) and f(ug)(A) = pg (A)/ g (€2,), it suffices to show that juq(€2,), e (2,) > (1 —¢€")"
with ¢’ < e. This holds for 11q(£2,) by Theorem 6.3, and so for pg by exponential contiguity. g

Remark 12.3. In the setting of the above theorem, if ;g has marginals (up, : s € S) pg has
marginals (up, : s € S), and each Fy, is the set of subsets of some Ay, C €,, then we have
Hq = pq precisely when each pp, ~ pip: this holds by Theorem 7.2 and the following lemma.

Lemma 12.4. Suppose p = (pin)nen and v = (Vp)nen where each p, and vy, is a probability measure
on Q. Suppose also ' = (u))nen and V' = (V),)nen where each ul, and v), is a probability measure
on Q. Let A = (Ap)nen with each A, C Q, and A" = (A])nen with each A, C Q.. Then
X 1 maxar v x Voif and only if A voand @ AV

Proof. Let n=! < § < e. Suppose first that u x p/ ~axar v x V. Consider AL C A, with
pn(AL) > (1 — 6™ Let A, = AL x A, Then (un, x ul,)(An) = pn(AL) > (1 —6)", so v, (AL) =
(vn x V) (Ay) > (1 — &)™ by assumption, i.e. p Sa v. Similarly v <A p, S0 4 ~a v, and similarly
' ~ar V. Now suppose p ~a v and p/ ~a V. Let B, = {(x,y) € A, x AL : (v x 1),)(x,y) <
(1 —&)™(pn x b)) (x,y)}. We have B, C (B} x Al)U (A, x B2), where B = {x € A, : v,(x) <
(1—e)"?u,(x)} and B2 = {y € A : V. (y) < (1 —&)™? (y)}. By assumption, p,(BL) < (1 —26)"
and g, (B2) < (1 —26)". Therefore (ju, x p!,)(Byn) < 2(1 —286)" < (1 —6)", ie. ux p Saxar v x V.
Similarly, v X v/ Saxar p X 'y 50 oo X pf mawar v X V. O

13 Concluding remarks

There are several natural directions in which to explore potential generalisations of our results:
instead of associating vectors in Z” to each coordinate we may consider values in another (abelian)
group GG, and we may consider more general functions of the coordinate values, e.g. a (low degree)
polynomial (e.g. a quadratic for application to the Borsuk conjecture) rather than a linear function
(is there a ‘local’ version of Kim-Vu [24] polynomial concentration?). Even for linear functions in one
dimension, our setting seems somewhat related to some open problems in Additive Combinatorics,
such as the independence number of Paley graphs, but here our assumptions seem too restrictive
(one cannot use transfers). We may also ask when better bounds hold, e.g. for G = Z/6Z we recall
an open problem of Grolmusz [15]: is there a subexponential bound for set systems where the size
of each set is divisible by 6 but each pairwise intersection is not divisible by 67

Our results may interpreted as giving robust statistics in the theory of social choice. Suppose
that we represent a voter by an opinion vector x € J", where each x; represents an opinion on the
ith issue, for example, when |J| = 2 each issue could be a question with a yes/no answer. Then we
can represent a population of voters by a probability measure p on J", where u(x) is the proportion
of a voters with opinion x. Now suppose that we want to compare two (or more) voters. One
natural measure of comparison is to assign a score to each opinion and calculate the total score on
opinions where they agree. If this is too simplistic, then we could assign score vectors in some RP,
where D is small enough to give a genuine compression of the data, but large enough to capture the
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varied nature of the issues: we compare x and x’ according to Vn(x,x’). Taking the perspective of
robust statistics (see [16]), it is natural to ask whether this statistic is sensitive to our uncertainty in
the probability measure that represents the population as a whole: Theorem 12.2 (with the remark
following it) gives one possible answer.

Acknowledgements: The authors would like to thank the referees for a careful reading of the paper
and many helpful comments.
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